RAS PhysicsПисьма в Журнал экспериментальной и теоретической физики JETP Letters (Journal of Experimental and Theoretical Physics Letters)

  • ISSN (Print) 0370-274X
  • ISSN (Online) 3034-5766

Статистические модели барреновских плато и антиконцентрация наблюдаемых Паули

PII
S30345766S0370274X25080103-1
DOI
10.7868/S3034576625080103
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 122 / Issue number 3-4
Pages
177-183
Abstract
Мы вводим статистические модели для каждого из трех основных источников барреновских плато: нелокальность наблюдаемой, запутанность начального состояния и экспрессивность квантовой цепи. В частности, нелокальные наблюдаемые моделируются случайными операторами Паули, что приводит к барреновским плато с вероятностью, экспоненциально близкой к единице. Эти модели являются дополнением к традиционным детерминированным подходам и зачастую проще в анализе. В рамках предложенного формализма мы показываем, что в режиме барреновского плато любые два оператора Паули антиконцентрированы с высокой вероятностью в следующем смысле: хотя каждый из них локализован в экспоненциально малом подпространстве параметров, соответствующие области по существу независимы, так что их пересечение экспоненциально меньше, чем каждое из подпространств по отдельности. Это наблюдение важно для понимания структуры квантовых ландшафтов с барреновскими плато и подходов к их оптимизации, включая стратегии предварительной инициализации.
Keywords
Date of publication
17.06.2025
Year of publication
2025
Number of purchasers
0
Views
33

References

  1. 1. M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, and P. J. Coles, Nature Reviews Physics 3, 625 (2021); arXiv:2012.09265.
  2. 2. J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, Nature 549, 195 (2017); arXiv:1611.09347.
  3. 3. M. Schuld, R. Sweke, and J. J. Meyer, Phys. Rev. A 103, 032430 (2021); arXiv:2008.08605v2.
  4. 4. L. Bittel and M. Kliesch, Phys. Rev. Lett. 127, 120502 (2021); arXiv:2101.07267.
  5. 5. E. R. Anschuetz, arXiv:2109.06957 (2021).
  6. 6. E. R. Anschuetz and B. T. Kiani, Nat. Commun. 13, 7760 (2022); arXiv:2205.05786.
  7. 7. J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and H. Neven, Nat. Commun. 9, 1 (2018); arXiv:1803.11173.
  8. 8. M. Larocca, S. Thanasilp, S. Wang, K. Sharma, J. Biamonte, P. J. Coles, L. Cincio, J. R. McClean, Z. Holmes, and M. Cerezo, Nature Reviews Physics 7, 174 (2025); arXiv:2405.00781.
  9. 9. A. Arrasmith, M. Cerezo, P. Czarnik, L. Cincio, and P. J. Coles, Quantum 5, 558 (2021); arXiv:2011.12245v2.
  10. 10. P. Bermejo, P. Braccia, M. S. Rudolph, Z. Holmes, L. Cincio, and M. Cerezo, arXiv:2408.12739 (2024).
  11. 11. M. Cerezo, M. Larocca, D. Garcia-Martin, N. L. Diaz, P. Braccia, E. Fontana, M. S. Rudolph, P. Bermejo, A. Ijaz, S. Thanasilp, E. R. Anschuetz, and Z. Holmes, arXiv:2312.09121 (2023).
  12. 12. A. Skolik, J. R. McClean, M. Mohseni, P. van der Smagt, and M. Leib, Quantum Machine Intelligence 3, 5 (2021); arXiv:2006.14904.
  13. 13. E. Grant, L. Wossnig, M. Ostaszewski, and M. Benedetti, Quantum 3, 214 (2019); arXiv:1903.05076v3.
  14. 14. X.-M. Zhang, T. Li, and X. Yuan, arXiv:2201.11495 (2022).
  15. 15. S. Wang, E. Fontana, M. Cerezo, K. Sharma, A. Sone, L. Cincio, and P. J. Coles, Nat. Commun. 12, 6961 (2021); arXiv:2007.14384.
  16. 16. M. S. Rudolph, J. Miller, D. Motlagh, J. Chen, A. Acharya, and A. Perdomo-Ortiz, arXiv:2208.13673 (2022).
  17. 17. N. A. Nemkov, E. O. Kiktenko, and A. K. Fedorov, Phys. Rev. A 111, 012441 (2025); arXiv:2405.05332.
  18. 18. E. Farhi, J. Goldstone, and S. Gutmann, arXiv:1411.4028 (2014).
  19. 19. A. Letcher, S. Woerner, and Ch. Zoufal, arXiv:2309.12681 (2023).
  20. 20. M. Cerezo, A. Sone, T. Volkoff, L. Cincio, and P. J. Coles, Nat. Commun. 12, 1 (2021); arXiv:2001.00550.
  21. 21. Z. Holmes, K. Sharma, M. Cerezo, and P. J. Coles, PRX Quantum 3, 010313 (2022); arXiv:2101.02138v2.
  22. 22. N. Dowling, P. Kos, and Xh. Turkeshi, arXiv:2408.16047.
  23. 23. Z. Puchala and J. A. Miszczak, Bulletin of the Polish Academy of Sciences Technical Sciences 65, 21 (2017); arXiv:1109.4244v2.
  24. 24. Z. Webb, Quantum Information and Computation 16, 1379 (2016); arXiv:1510.02769.
  25. 25. H. Zhu, Phys. Rev. A 96, 062336 (2018); arXiv:1510.02619.
  26. 26. H. Zhu, R. Kueng, M. Grassl, and D. Gross, arXiv:1609.08172 (2016).
  27. 27. A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and J. M. Gambetta, Nature 549, 242 (2017); arXiv:1704.05018.
  28. 28. M. Liu, J. Liu, Y. Alexeev, and L. Jiang, npj Quantum Inf. 8, 137 (2022); arXiv:2205.09900.
  29. 29. V. Bergholm, J. Izaac, M. Schuld et al. (Collaboration), arXiv:1811.04968 (2018).
  30. 30. N. Nemkov, https://github.com/idnm/barren_traps/tree/hea (2024).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library