RAS PhysicsПисьма в Журнал экспериментальной и теоретической физики JETP Letters (Journal of Experimental and Theoretical Physics Letters)

  • ISSN (Print) 0370-274X
  • ISSN (Online) 3034-5766

Резонансное неупругое рассеяние рентгеновских лучей на Fe L-краях поглощения оксидов SrFeO (x = 2.46 и 2.82)

PII
S30345766S0370274X25080091-1
DOI
10.7868/S3034576625080091
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 122 / Issue number 3-4
Pages
171-176
Abstract
Спектры резонансного неупругого рентгеновского рассеяния (RIXS) на Fe -краях поглощения применены для изучения электронной структуры SrFeO и SrFeO. RIXS-спектры SrFeO, по сравнению со спектрами SrFeO, характеризуются менее интенсивными пиками упругой рекомбинации и менее выраженными неупругими спектральными особенностями, что связано с меньшей степенью локализации + L состояний по сравнению с d-состояниями. Особенности неупругого рассеяния RIXS-спектров отнесены к возбуждениям . При более высоких энергиях возбуждения, где возбужденная в континуум флуоресценция становится доминирующей, спектры рентгеновской эмиссии хорошо согласуются с результатами измерения фотоэлектронных спектров валентных полос как SrFeO, так и SrFeO. Показано, что для интерпретации RIXS-спектров феррита SrFeO с трехвалентными ионами железа, находящимися как в октаэдрах, так и в тетраэдрах из ионов кислорода, можно использовать диаграммы Танабе-Сугано.
Keywords
Date of publication
07.07.2025
Year of publication
2025
Number of purchasers
0
Views
39

References

  1. 1. A. G. Andersen, T. Hayakawa, K. Suzuki, M. Shimizu, and K. Takehira, Catal. Lett. 27, 221 (1994).
  2. 2. H. L. Tuller, Solid State Ion. 94, 63 (1997).
  3. 3. Y. Wang, J. Chen, and X. Wu, Mater. Lett. 49, 361 (2001).
  4. 4. E. Sediva and J. L. M. Rupp, J. Mater. Chem. A 11, 26752 (2023).
  5. 5. P. K. Gallagher, J. B. McChesney, and D. N. E. Buchanan, J. Chem. Phys. 41, 2429 (1964).
  6. 6. C. Greaves, A. J. Jacobson, B. C. Toffeld, and B. E. G. Fender, Acta Cryst. B 31, 641 (1975).
  7. 7. M. Harder and H. M¨uller-Buschbaum, Z. Anorg. Allg. Chem. 464, 169 (1980).
  8. 8. J. P. Hodges, S. Short, J. D. Jorgensen, B. D. X. Xiong, S. M. Mini, and C. W. Kimball, J. Solid State Chem. 151, 190 (2000).
  9. 9. V. L. Kozhevnikov, I. A. Leonidov, M. V. Patrakeev, E. B. Mitberg, and K. P. Poeppelmeier, J. Solid State Chem. 158, 320 (2000).
  10. 10. F. Saib, M. Mekiri, B. Bellal, M. Chibane, and M. Trari, Russ. J. Phys. Chem. A 91, 1562 (2017).
  11. 11. P. Adler, A. Lebon, V. Damljanovic, C. Ulrich, C. Bernhard, A. V. Boris, A. Maljuk, C. T. Lin, and B. Keimer, Phys. Rev. B 73, 094451 (2006).
  12. 12. M. Abbate, F. M. F. de Groot, J. C. Fuggle, A. Fujimori, O. Strebel, F. Lopez, M. Domke, G. Kaindl, G. A. Sawatzky, M. Takano, Y. Takeda, H. Eisaki, and S. Uchida, Phys. Rev. B 46, 4511 (1992).
  13. 13. Y. Takeda, K. Kanno, T. Takeda, O. Yamamoto, M. Takano, N. Nakayama, and Y. Bando, Solid State Chem. 63, 237 (1986).
  14. 14. M. Takano, T. Okita, N. Nakayama, Y. Bando, Y. Takeda, O. Yamamoto, and J. B. Goodenough, J. Solid State Chem. 73, 140 (1988).
  15. 15. L. Fourn`es, Y. Potin, J. C. Grenier, G. Demazeau, and M. Pouchard, Solid State Commun. 62, 239 (1987).
  16. 16. M. Abbate, G. Zampieri, J. Okamoto, A. Fujimori, S. Kawasaki, and M. Takano, Phys. Rev. B 65, 165120 (2002).
  17. 17. A. Lebon, P. Adler, C. Bernhard, A. V. Boris, A. V. Pimenov, A. Maljuk, C. T. Lin, C. Ulrich, and B. Keimer, Phys. Rev. Lett. 92, 037202 (2004).
  18. 18. V. R. Galakhov, E. Z. Kurmaev, K. Kuepper, M. Neumann, J. A. McLead, A. Moewes, I. A. Leonidov, and V. L. Kozhevnikov, J. Phys. Chem. C 114, 5154 (2010).
  19. 19. S. M. Butorin, J. Electron Spectr. Relat. Phen. 110-111, 213 (2000).
  20. 20. Y. Tanabe and S. Sugano, J. Phys. Soc. Jpn. 9, 753 (1954).
  21. 21. D. L. Wood and J.P. Remeika, J. Appl. Phys. 38, 1038 (1967).
  22. 22. S. H. Wemple, S. L. Blank, J. A. Seman, and W. A. Biolsi, Phys. Rev. B 9, 2134 (1974).
  23. 23. G. B. Scott, D. E. Lacklison, and J. L. Page, Phys. Rev. B 10, 971 (1974).
  24. 24. A.G. Gavriliuk, V.V. Struzhkin, I. S. Lyubutin, and I.A. Trojan, Письма в ЖЭТФ 82, 682 (2005)
  25. 25. A.G. Gavriliuk, V.V. Struzhkin, I. S. Lyubutin, and I.A. Trojan, JETP Lett. 82, 603 (2005).
  26. 26. S. G. Chuizbăian, G. Ghiringhelli, C. Dallera, M. Grioni, P. Amann, X. Wang, L. Braicovich, and L. Patthey, Phys. Rev. Lett. 95, 197402 (2005).
  27. 27. J. J. Jia, T. A. Callcott, J. Yurkas, A. W. Ellis, F. J. Himpsel, M. G. Samant, J. Stohr, D. L. Ederer, J. A. Carlisle, E. A. Hudson, L. J. Terminello, D. K. Shuh, and R. C. C. Perera, Rev. Sci. Instrum. 66, 1394 (1995).
  28. 28. J. P. Crocombette, M. Pollak, F. Jollet, N. Thromat, and M. Gautier-Soyer, Phys. Rev. B 52, 3143 (1995).
  29. 29. J. H. Kim, S. C. Wi, S. Yoon, B. J. Suh, J.-S. Kang, S. W. Han, K. H. Kim, A. Sekiyama, S. Kasai, S. Suga, C. Hwang, C. G. Olson, B. J. Park, and B. W. Lee, J. Korean Phys. Soc. 151, 416 (2003).
  30. 30. K. Kuepper, I. Balasz, H. Hesse, A. Winiarski, K. C. Prince, M. Matteucci, D. Wett, R. Szargan, E. Burzo, and M. Neumann, Phys. Status Solidi 201, 3252 (2004).
  31. 31. P. S. Miedema and F. M. de Groot, J. Electron. Spectr. Relat. Phen. 187, 32 (2013).
  32. 32. V. V. Mesilov, V. R. Galakhov, B. A. Gizhevskii, N. I. Lobachevskaya, M. Raekers, C. Taubitz, A. R. Giordani, and M. Neumann, J. Electron. Spectr. Relat. Phen. 185, 598 (2012).
  33. 33. В. В. Месилов, В.Р. Галахов, Б.А. Гижевский, В.С. Гавико, Н.А. Овечкина, and A. Buling, ФТТ 56, 282 (2014)
  34. 34. V.V. Mesilov, V.R. Galakhov, B.A. Gizhevskii, V. S. Gaviko, N.A. Ovechkina, and A. Buling, Phys. Solid State 56, 282 (2014).
  35. 35. A. Feldhoff, J. Martynczuk, M. Arnold, M. Myndyk, I. Bergmann, V. Sepelak, W. Gruner, U. Vogt, A. Hähnel, and J. Woltersdorf, J. Solid State Chem. 182, 2961 (2009).
  36. 36. J. Miyawaki, S. Suga, H. Fujiwara, M. Urasaki, H. Ikeno, H. Niwa, H. Kiuchi, and Y. Harada, Phys. Rev. B 96, 214420 (2017).
  37. 37. M. Magnuson, S. M. Butorin, C. Sâthe, J. Nordgren, and P. Ravindran, Europhys. Lett. 68, 289 (2004).
  38. 38. L.-C. Duda, J. Nordgren, G. Dräger, S. Bocharov, and T. Kirchner, J. Electron Spectr. Relat. Phen., 110, 275 (2000).
  39. 39. W. L. Yang, A. P. Sorini, C.-C. Chen, B. Moritz, W.-S. Lee, F. Vernay, P. Olalde-Velasco, J. D. Denlinger, B. Delley, J.-H. Chu, J. G. Analyti, I. R. Fisher, Z. A. Ren, J. Yang, W. Lu, Z. X. Zhao, J. van den Brink, Z. Hussain, Z.-X. Shen, and T. P. Devereaux, Phys. Rev. B 80, 014508 (2009).
  40. 40. L. Marusak, R. Messier, and W. B. White, J. Phys. Chem. Solids 41, 981 (1980).
  41. 41. R. J. Lancashire, Interpretation of the spectra of first-row transition metal complexes (1999); http://wwwchem.uwimona.edu.jm/courses/Tanabe-Sugano/TSintro.html
  42. 42. P. Q. Liu, PhD thesis, Institut de Chimie de la Matière Condensée de Bordeaux, Université Bordeaux 1, Bordeaux, France (2013).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library