ОФНПисьма в Журнал экспериментальной и теоретической физики JETP Letters (Journal of Experimental and Theoretical Physics Letters)

  • ISSN (Print) 0370-274X
  • ISSN (Online) 3034-5766

Exact relations between running of αs and α in N = 1 SQCD + SQED

Код статьи
S0370274X25030019-1
DOI
10.31857/S0370274X25030019
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 121 / Номер выпуска 5-6
Страницы
337-339
Аннотация
In N = 1 supersymmetric QCD and QED theory we derive the (all-order) exact equations relating the renormalization group behaviour of the strong and electromagnetic couplings and prove that they are valid in the combined higher covariant derivative regularized and minimal subtraction of logarithms renormalized prescription. In particular, the β-function of N = 1 supersymmetric QCD can be expressed in terms of the Adler D-function. If all flavors have the same absolute value of the electromagnetic charges, it is also possible to write a simple relation between the β-functions for the strong and electromagnetic coupling constants. In this particular case there is a special renormalization group invariant relation.
Ключевые слова
Дата публикации
16.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
16

Библиография

  1. 1. E. C. G. Stueckelberg de Breidenbach and A. Petermann, Helv. Phys. Acta 26, 499 (1953).
  2. 2. M. Gell-Mann and F. E. Low, Phys. Rev. 95, 1300(1954).
  3. 3. N. N. Bogolyubov and D. V. Shirkov, Nuovo Cim. 3, 845(1956).
  4. 4. S. L. Adler, Phys. Rev. D 10, 3714 (1974).
  5. 5. V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B 229, 381 (1983).
  6. 6. D. R. T. Jones, Phys. Lett. B 123, 45 (1983).
  7. 7. I. Jack, D. R. T. Jones, and C. G. North, Nucl. Phys. B 486, 479 (1997); arXiv:hepph/9609325 [hep-ph]].
  8. 8. D. I. Kazakov, JETP Lett. 41, 335 (1985).
  9. 9. A. A. Slavnov, Nucl. Phys. B 31, 301 (1971).
  10. 10. A. A. Slavnov, Teor. Mat. Fiz. 13, 174 (1972) [Theor. Math. Phys. 13, 1064 (1972)].
  11. 11. A. L. Kataev and K. V. Stepanyantz, Nucl. Phys. B 875, 459 (2013); arXiv:1305.7094 [hep-th].
  12. 12. I. O. Goriachuk, A. L. Kataev, and K. V. Stepanyantz, Phys. Lett. B 785, 561 (2018); arXiv:1808.02050 [hep-th].
  13. 13. I. O. Goriachuk and A. L. Kataev, JETP Lett. 111(12), 663 (2020); arXiv:2005.03445 [hep-th].
  14. 14. M. Shifman and K. Stepanyantz, Phys. Rev. Lett. 114(5), 051601 (2015); arXiv:1412.3382 [hep-th].
  15. 15. M. Shifman and K. V. Stepanyantz, Phys. Rev. D 91, 105008 (2015); arXiv:1502.06655 [hep-th].
  16. 16. A. I. Vainshtein, V. I. Zakharov, and M. A. Shifman, Pis’ma v ZhETF 42, 182 (1985) [JETP Lett. 42, 224 (1985)].
  17. 17. M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Phys. Lett. B 166, 334 (1986).
  18. 18. D. Korneev, D. Plotnikov, K. Stepanyantz, and N. Tereshina, JHEP 10, 046 (2021); arXiv:2108.05026 [hep-th].
  19. 19. O. Haneychuk, V. Shirokova, and K. Stepanyantz, JHEP 09, 189 (2022); arXiv:2207.11944 [hep-ph].
  20. 20. K. V. Stepanyantz, Nucl. Phys. B 852, 71 (2011); arXiv:1102.3772 [hep-th].
  21. 21. A. V. Smilga and A. Vainshtein, Nucl. Phys. B 704, 445 (2005); arXiv:hep-th/0405142 [hep-th].
  22. 22. A. A. Vladimirov, Sov. J. Nucl. Phys. 31, 558 (1980).
  23. 23. A. L. Kataev, A. E. Kazantsev, and K. V. Stepanyantz, Nucl. Phys. B 926, 295 (2018); arXiv:1710.03941 [hep-th].
  24. 24. C. Bonanno, P. Butti, M. Garc´ıa P´erez, A. Gonz´alezArroyo, K. I. Ishikawa, and M. Okawa, Phys. Rev. D 110(7), 074507 (2024); arXiv:2406.08995 [hep-th].
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека