RAS PhysicsПисьма в Журнал экспериментальной и теоретической физики JETP Letters (Journal of Experimental and Theoretical Physics Letters)

  • ISSN (Print) 0370-274X
  • ISSN (Online) 3034-5766

Zvezdnaya evolyutsiya i aksionopodobnye chastitsy: novye ogranicheniya i ukazaniya iz analiza sharovykh skopleniy v dannykh Gaia DR3

PII
S0370274X25020012-1
DOI
10.31857/S0370274X25020012
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 121 / Issue number 3-4
Pages
177-183
Abstract
Аксионоподобные частицы (ALP) – это гипотетические псевдоскалярные бозоны, естественным образом появляющиеся в расширениях Стандартной модели. Их взаимодействие с обычной материей и излучением подавлено, что затрудняет их обнаружение в лабораторных экспериментах. Однако эти частицы, образующиеся в недрах звезд, могут обеспечивать дополнительный механизм потери энергии, потенциально влияя на звездную эволюцию. Известные методы поиска таких эффектов включают в себя измерение свойств красных гигантов и гелиевых звезд в шаровых скоплениях. Здесь мы используем опубликованные каталоги звезд, отобранных в качестве членов семи шаровых скоплений на основе параллаксов и собственных движений, измеренных инструментом Gaia (Data Realease 3). Используя ранее выведенные теоретические соотношения и новые данные, мы находим ограничение сверху на константу связи ALP с электронами, gae < 5.2 × 10−14 (95% CL), и указание (3.3σ) на ненулевую константу связи ALP с фотонами, gaγ = (6.5+1.1−1.3) × 10−11 ГэВ−1. Учитывая точность современных наблюдательных данных, в будущем необходимо уточнить ограничения на ALP с помощью более сложных анализов.
Keywords
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
27

References

  1. 1. G. G. Raffelt, Stars as laboratories for fundamental physics: The astrophysics of neutrinos, axions, and other weakly interacting particles, University of Chicago Press, Chicago (1996).
  2. 2. L. Di Luzio, M.Fedele, M. Giannotti, F. Mescia, and E. Nardi, JCAP 02, 035 (2022).
  3. 3. A. Caputo and G. Raffelt, PoS 454, 041 (2024).
  4. 4. A. Renzini and F. F. Pecci, Ann. Rev. Astron. Astrophys. 26, 199 (1988).
  5. 5. T. Prusti, J. de Bruijne, A. Brown et al. (Gaia), Astron. Astrophys. 595, A1 (2016).
  6. 6. A. Vallenari, A. Brown, T. Prusti et al. (Gaia), Astron. Astrophys. 674, A1 (2023).
  7. 7. G. A. Gontcharov, A. V. Mosenkov, and M. Y. Khovritchev, Mon. Not. Roy. Astron. Soc. 483, 4949 (2019).
  8. 8. G. A. Gontcharov, M. Y. Khovritchev, and A. V. Mosenkov, Mon. Not. Roy. Astron. Soc. 497, 3674 (2020).
  9. 9. G. A. Gontcharov, M. Y. Khovritchev, A. V. Mosenkov, V. B. Il’in, A. A. Marchuk, S. S. Savchenko, A. A. Smirnov, P. A. Usachev, and D. M. Poliakov, Mon. Not. Roy. Astron. Soc. 508, 2688 (2021).
  10. 10. G. A. Gontcharov, M. Y. Khovritchev, A. V. Mosenkov, V. B. Il’in, A. A. Marchuk, D. M. Poliakov, O. S. Ryutina, S. S. Savchenko, A. A. Smirnov, P. A. Usachev, J.-W. Lee, C. Camacho, and N. Hebdon, Mon. Not. Roy. Astron. Soc. 518, 3036 (2023).
  11. 11. G. A. Gontcharov, C. J. Bonatto, O. S. Ryutina, S. S. Savchenko, A. V. Mosenkov, V. B. Il’in, M. Y. Khovritchev, A. A. Marchuk, D. M. Poliakov, A. A. Smirnov, and J. Seguine, Mon. Not. Roy. Astron. Soc. 526, 5628 (2023).
  12. 12. G. A. Gontcharov, S. S. Savchenko, A. A. Marchuk, C. J. Bonatto, O. S. Ryutina, M. Y. Khovritchev, V. B. Il’in, A. V. Mosenkov, D. M. Poliakov, and A. A. Smirnov, Res. Astron. Astrophys. 24, 065014 (2024).
  13. 13. H. Baumgardt and E. Vasiliev, Mon. Not. Roy. Astron. Soc. 505, 5957 (2021).
  14. 14. P. Montegriffo, M. Bellazzini, F. De Angeli et al. (Gaia), Astron. Astrophys. 674, A33 (2023).
  15. 15. E. B. Amoores, R. M. Jesus, A. Moitinho, V. Arsenijevic, R. S. Levenhagen, D. J. Marshall, L. O. Kerber, R. Künzel, and R. A. Moura, Mon. Not. R. Astron. Soc. 508, 1788 (2021).
  16. 16. O. Straniero, C. Pallanca, E. Dalessandro, I. Domínguez, F. R. Ferraro, M. Giannotti, A. Mirizzi, and L. Piersanti, Astron. Astrophys. 644, A166 (2020).
  17. 17. A. Ayala, I. Domínguez, M. Giannotti, A. Mirizzi, and O. Straniero, Phys. Rev. Lett. 113, 191302 (2014).
  18. 18. G. Worthey and H.-C. Lee, Astrophys. J. Suppl. 193, 1 (2011).
  19. 19. A. Recio-Blanco, G. Piotto, F. de Angeli, S. Cassisi, M. Riello, M. Salaris, A. Pietrinferni, M. Zoccali, and A. Aparicio, Astron. Astrophys. 432, 851 (2005).
  20. 20. A. Serenelli, A. Weiss, S. Cassisi, M. Salaris, and A. Pietrinferni, Astron. Astrophys. 606, A33 (2017).
  21. 21. L. Di Luzio, M. Fedele, M. Giannotti, F. Mescia, and E. Nardi, Phys. Rev. Lett. 125(13), 131804 (2020).
  22. 22. F.Tognini, G. Valle, M. Dell’Omodarme, S. Degl’Innocenti, and P. G. Prada Moroni, Astron. Astrophys. 679, A75 (2023).
  23. 23. M. J.Dolan, F. J. Hiskens, and R. R. Volkas, JCAP 10, 096 (2022).
  24. 24. S. Navas, C. Amsler, T. Gutsche et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024).
  25. 25. A. Mucciarelli, L. Lovisi, B. Lanzoni, and F. R. Ferraro, Astrophys. J. 786, 14 (2014).
  26. 26. M. Salaris, M. Riello, S. Cassisi, and G. Piotto, Astron. Astrophys. 420, 911 (2004).
  27. 27. I. G. Irastorza and J. Redondo, Prog. Part. Nucl. Phys. 102, 89 (2018).
  28. 28. M. Libanov and S. Troitsky, Phys. Lett. B 802, 135252 (2020).
  29. 29. L.-Q. Gao, X.-J. Bi, J. Li, and P.-F. Yin, arXiv:2407.20118 (2024).
  30. 30. C. O’Hare, https://cajohare.github.io/AxionLimits/, July (2020).
  31. 31. W. A. Terrano, E. G. Adelberger, J. G. Lee, and B. R. Heckel, Phys. Rev. Lett. 115, 201801 (2015).
  32. 32. E. Aprile, K. Abe, F. Agostini et al. (XENONnT), Phys. Rev. Lett. 129, 161805 (2022).
  33. 33. R. Ballou, G. Deferne, M.Finger et al. (OSQAR), Phys. Rev. D 92, 092002 (2015).
  34. 34. V. Anastassopoulos, S. Aune, K. Barth et al. (CAST), Nature Phys. 13, 584 (2017).
  35. 35. K. Altenmuüller, V. Anastassopoulos, S. Arguedas-Cuendis et al. (CAST), arXiv:2406.16840 (2024).
  36. 36. D. Noordhuis, A. Prabhu, S. J. Witte, A. Y. Chen, F. Cruz, and C. Weniger, Phys. Rev. Lett. 131, 111004 (2023).
  37. 37. M. Giannotti, I. G. Irastorza, J. Redondo, A. Ringwald, and K. Saikawa, JCAP 10, 010 (2017).
  38. 38. S. V. Troitsky, JETP Lett. 105, 55 (2017).
  39. 39. G. Galanti and M. Roncadelli, Universe 8, 253 (2022).
  40. 40. G. Galanti, L. Nava, M. Roncadelli, F. Tavecchio, and G. Bonnoli, Phys. Rev. Lett. 131, 251001 (2023).
  41. 41. S. V.Troitsky, Pis’ma v ZhETF 116, 745 (2022).
  42. 42. S. Troitsky, JCAP 01, 016 (2024).
  43. 43. M. A.Kudenko and S. V. Troitsky, JETP Lett. 119, 335 (2024).
  44. 44. M. Simet, D. Hooper, and P. D. Serpico, Phys. Rev. D 77, 063001 (2008).
  45. 45. M. Fairbairn, T. Rashba, and S. V. Troitsky, Phys. Rev. D 84, 125019 (2011).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library