ОФНПисьма в Журнал экспериментальной и теоретической физики JETP Letters (Journal of Experimental and Theoretical Physics Letters)

  • ISSN (Print) 0370-274X
  • ISSN (Online) 3034-5766

Effect of Coulomb correlations on the electronic structure of bulk VSeO: a DFT+DMFT study

Код статьи
S30345766S0370274X25080078-1
DOI
10.7868/S3034576625080078
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 122 / Номер выпуска 3-4
Страницы
162-164
Аннотация
We present results of density functional theory (DFT) plus dynamical mean-field theory (DFT+DMFT) calculations of the electronic structure of bulk paramagnetic VSeO.We show that local Coulomb correlations in the partially filled V 3d shells induce renormalizations of the DFT spectral functions close to the Fermi energy preserving their shape. These transformations are not accompanied by a spectral weight transfer to Hubbard bands, indicating a moderately correlated metallic state of bulk paramagnetic VSeO. The V 3d states exhibit a quasiparticle mass enhancement ∼ 1.34 − 3.11 comparable to that in the isostructural compound V2Te2O. We demonstrate that orbital selectivity of correlation effects in VSeO is less pronounced compared to V2Te2O as can be traced from the weaker differentiation of and local spin correlation functions for different V 3d orbitals. The analysis of the temperature dependence of the self-energy allows us to speculate on possible deviations from the Fermi-liquid behavior of VSeO.
Ключевые слова
Дата публикации
28.06.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
35

Библиография

  1. 1. S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutierrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, ACS Nano 7, 2898 (2013).
  2. 2. K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, Nature 490, 192 (2012).
  3. 3. R. M. Fernandes, A. I. Coldea, H. Ding, I. R. Fisher, P. J. Hirschfeld, and G. Kotliar, Nature (London) 601, 35 (2022).
  4. 4. M. V. Sadovskii, Phys.-Uspekhi 51, 1201 (2008).
  5. 5. A. Ablimit, Y.-L. Sun, E.-J. Cheng, Ya-B. Liu, S.-Q. Wu, H. Jiang, Z. Ren, S. Li, and G.-H. Cao, Inorg. Chem. 57, 14617 (2018).
  6. 6. H. Lin, J. Si, X. Zhu, K. Cai, H. Li, L. Kong, X. Yu, H.-H. Wen, Phys. Rev. B 98, 075132 (2018).
  7. 7. H.-Y. Ma, M. Hu, N. Li, J. Liu, W. Yao, J.-F. Jia, and J. Liu, Nat. Commun. 12, 2846 (2021).
  8. 8. Y.-X. Yu, Appl. Surf. Sci. 546, 149062 (2021).
  9. 9. V. I. Anisimov, A. I. Poteryaev, M. A. Korotin, A. O. Anokhin, and G. Kotliar, J. Phys.: Condens. Matter 9, 7359 (1997).
  10. 10. S. L. Skornyakov, I. O. Trifonov, and V. I. Anisimov, JETP Lett. 120, 525 (2024).
  11. 11. A. V. Chubukov and D. L. Maslov, Phys. Rev. B 86, 155136 (2012).
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека