RAS PhysicsПисьма в Журнал экспериментальной и теоретической физики JETP Letters (Journal of Experimental and Theoretical Physics Letters)

  • ISSN (Print) 0370-274X
  • ISSN (Online) 3034-5766

Analysis of astrophysical Si()Si reaction via the asymptotic normalization coefficient method

PII
S30345766S0370274X25080018-1
DOI
10.7868/S3034576625080018
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 122 / Issue number 3-4
Pages
133-135
Abstract
This study investigates the Si()Si astrophysical reaction using the Asymptotic Normalization Coefficient (ANC) method. The squared neutron asymptotic normalization coefficients (ANCs), for the virtual decay Si → Si + are extracted by reanalyzing the existing angular distributions of the Si()Si reaction at 12.5 MeV. Both the Distorted Wave Born Approximation (DWBA) and Adiabatic Distorted Wave Approximation (ADWA) models are applied to refine the analysis. The results show improved ANC values compared to previous DWBA calculations. The squared neutron asymptotic normalization coefficient (ANC), for the ground state is found to be 32.49 ± 6 fm with DWBA and 31.45 ± 6 fm with ADWA. Additionally, the direct capture (DC) reaction rate was calculated and compared with previous work. The results show good agreement with the literature, with minor deviations at higher temperatures, highlighting the importance of the DC process in the Si()Si reaction. This work emphasizes the crucial role of neutron capture reactions in the formation of the weak -process component in stars and provides new insights into reaction rates and cross-sections.
Keywords
Date of publication
27.06.2025
Year of publication
2025
Number of purchasers
0
Views
38

References

  1. 1. S. E. Woosley and T. A. Weaver, The Astrophysical Journal Supplement Series 101, 181 (1995).
  2. 2. M. Pignatari, R. Gallino, M. Heil, M. Wiescher, F. Kappeler, F. Herwig, and S. Bisterzo, Astrophys. J. 710, 1557 (2010); DOI: 10.1088/0004-637X/710/2/1557.
  3. 3. R. C. Pardo, R. G. Couch, and W. D. Arnett, Astrophys. J. 191, 711 (1974); DOI: 10.1086/152953.
  4. 4. S. Palmerini, M. Busso, D. Vescovi, R. Trippella, S. Cristallo, and L. Piersanti, Astrophys. J. 921(1), 7 (2021).
  5. 5. L. R. Nittler and F. Ciesla, Annu. Rev. Astron. Astrophys. 54, 53 (2016).
  6. 6. E. Zinner, L. R. Nittler, and R. Gallino, A. I. Karakas, M. A. Lugaro, O. Straniero, and J. C. Lattanzio, Astrophys. J. 650(1), 350 (2006).
  7. 7. K. H. Guber, P. E. Koehler, H. Derrien, J. R. Laverne, T. Rauscher, and A. A. Sonzogni, Phys. Rev. C 67, 062802 (2003); DOI: https://doi.org/10.1103/PhysRevC.67.062802.
  8. 8. S. Piskof, J. Novak, E. ˇSimeˇckov´а, J. Ceipek, V. Kroha, J. Dobes, and P. Navratil, Nucl. Phys. A 662, 112 (2000); DOI: https://doi.org/10.1016/S0375-9474 (99)00425-X.
  9. 9. G. R. Satchler, Direct Nuclear Reactions, International Series of Monographs on Physics, Clarendon Press, Oxford (1983).
  10. 10. A. J. Koning and J. P. Delaroche, Nucl. Phys. A 713, 231 (2003); DOI: https://doi.org/10.1016/S0375-9474 (02)01321-0.
  11. 11. R. L. Varner, W. J. Thompson, T. L. McAbee, E. J. Ludwig, and T. B. Clegg, Phys. Rep. 201(2), 57 (1991); DOI: https://doi.org/10.1016/0370-1573 (91)90039-O.
  12. 12. A. M. Mukhamedzhanov, C. A. Gagliardi, and R. E. Tribble, Phys. Rev. C 63, 024612 (2001); DOI: https://doi.org/10.1103/PhysRevC.63.024612.
  13. 13. A. M. Mukhamedzhanov, V. Burjan, M. Gulino, Z. Hons, V. Kroha, M. McCleskey, J. Mrazek, N. Nguyen, F. M. Nunes, S. Piskor, S. Romano, M. L. Sergi, C. Spitaleri, and R. E. Tribble, Phys. Rev. C 84, 024616 (2011).
  14. 14. H. Beer, P. V. Sedyshev, W. Rochow, T. Rauscher, and P. Mohr, Nucl. Phys. A 709(1-4), 453 (2002); DOI: https://doi.org/10.1016/S0375-9474 (02)01030-8.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library