- Код статьи
- S30345766S0370274X25060125-1
- DOI
- 10.7868/S3034576625060125
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 121 / Номер выпуска 11-12
- Страницы
- 932-937
- Аннотация
- Наблюдается значительное усиление интенсивности вынужденного комбинационного рассеяния (ВКР) при воздействии ультразвука на воду. Усиление происходит как в прямом, так и обратном направлениях и прекращается после прекращения ультразвукового воздействия. Первая стоксова компонента ВКР увеличивается примерно в 4 и 2.5–3 раза в прямом и обратном направлениях соответственно, а вторая стоксова компонента – в 5–6 раз. Параллельно с этим происходит уменьшение интенсивности упругого рассеяния, что свидетельствует о перераспределении энергии между механизмами рассеяния. Эффект проявляется только при пикосекундной лазерной накачке (30 пс, 10 мДж, 10 Гц) и не наблюдается при использовании наносекундных лазерных импульсов. Это указывает на случайно распределенную обратную связь как на основной физический механизм. Усиление интенсивности ВКР также зафиксировано в этаноле и ацетоне. Механизм требует дальнейшего детального исследования.
- Ключевые слова
- Дата публикации
- 09.05.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 33
Библиография
- 1. Y. Almohamed, R. Barille, A. I. Vodchits, Yu. P. Voinov, V. S. Gorelik, A. D. Kudryavtseva, V. A. Orlovich, and N. V. Tcherniega, JETP Lett. 101, 365 (2015); https://doi.org/10.1134/S0021364015060028.
- 2. S. A. Akhmanov and G. A. Lyakhov, JETP 66, 96 (1974).
- 3. S. Loranger and R. Kashyap, Opt. Lett. 43, 5705 (2018).
- 4. C Y. Wang, X. Cao, S. Wang, C. Sun, and Z. Men, Opt. Commun. 501, 127394 (2021).
- 5. R. R. Frontiera, A. I. Henry, N. L. Gruenke, and R. P. van Duyne, J. Phys. Chem. Lett. 2, 1199 (2011).
- 6. K. Wieland, S. Tauber, C. Gasser, L. A. Rettenbacher, L. Lux, S. Radel, and B. Lendl, Anal. Chem. 91(22), 14231 (2019).
- 7. H. Wu, Z. N. Wang, D. V. Churkin, I. D. Vatnik, M. Q. Fan, and Y. J. Rao, Laser Phys. Lett. 12, 015101 (2014).
- 8. S. A. Babin, S. I. Kablukov, E. A. Zlobina, E. V. Podivilov, S. R. Abdullina, I. A. Lobach, A. G. Kuznetsov, I. D. Vatnik, D. V. Churkin, and S. K. Turitsyn, Raman Fiber Lasers. Springer Series in Optical Sciences, ed. by Y. Feng, Springer (2017), v. 207.
- 9. W. Liu, P. Ma, H. Lv, J. Xu, P. Zhou, and Z. Jiang, Opt. Express 24(23), 26715 (2016).
- 10. V. N. Lugovoi. JETP Lett. 20(9), 625 (1974).
- 11. M. A. Margulis, Sonochemistry and Cavitatio, Gordon & Breach, London (1996), 543 p.
- 12. O. V. Abramov, High-intensity Ultrasonics: Theory and Industrial, OPA, Amsterdam (1998), 692 p.
- 13. M. Ashokkumar, Ultrasonics Sonochemistry 18, 864 (2011).
- 14. A. Brotchie, F. Grieser, and M. Ashokkumar, Phys. Rev. Lett. 102, 084302 (2009).
- 15. V. Rakesh Kumar and P. Prem Kiran, JOSA B 33(6), 1157 (2016).
- 16. A. V. Skrabatun, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, Science 322, 1857 (2008).
- 17. S. M. Pershin, A. P. Brysev, M. Y. Grishin, V. N. Lednev, A. F. Bunkin, and R. V. Klopotov, JETP Lett. 111, 392 (2020).