ОФНПисьма в Журнал экспериментальной и теоретической физики JETP Letters (Journal of Experimental and Theoretical Physics Letters)

  • ISSN (Print) 0370-274X
  • ISSN (Online) 3034-5766

Подавление магнитного перехода в ультрамалых наночастицах ∈-Fe2O3 – размерный эффект по данным метода ядерного рассеяния вперед

Код статьи
S0370274X25050202-1
DOI
10.31857/S0370274X25050202
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 121 / Номер выпуска 9-10
Страницы
839-845
Аннотация
Представлены результаты исследования особенностей магнитной структуры ультрамалых наночастиц ∈-Fe2O3 методом ядерного рассеяния вперед (Nuclear Forward Scattering, NFS) с использованием синхротронного излучения. Образец представляет собой изолированные иммобилизованные в матрице ксерогеля SiO2 наночастицы ∈-Fe2O3 со средним размером = 3.8 нм. Временны´е спектры были измерены в диапазоне температур 4–300 K в нулевом внешнем магнитном поле и поле H = 4 Тл, приложенном в продольном направлении. Характер изменения величин сверхтонкого поля Hhf в зависимости от внешнего магнитного поля одинаков во всем диапазоне температур – наблюдается монотонное увеличение Hhf во внешнем поле, в отличие от крупных частиц ∈-Fe2O3. Полученные результаты позволяют заключить, что для частиц ∈-Fe2O3 ультрамалых размеров (менее ≈ 9 нм) магнитный переход в температурной области 80–150 K отсутствует, а магнитная структура является неколлинеарной в области 4–300 K.
Ключевые слова
Дата публикации
16.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
12

Библиография

  1. 1. F. J. Morin, Phys. Rev. 78, 819 (1950); https://doi.org/10.1103/PhysRev.78.819.2.
  2. 2. P. B. Fabritchnyi, E. V. Lamykin, A. M. Babechkin, and A. N. Nesmeianov, Solid State Commun. 11, 343 (1972); https://doi.org/10.1016/0038-1098 (72)90246-3.
  3. 3. И. E. Дзялошинский, ЖЭТФ 32, 1547 (1957).
  4. 4. F. Walz, J. Phys. Condens. Matter 14, R285 (2002); https://doi.org/10.1088/0953-8984/14/12/203.
  5. 5. M. J. Jackson and B. Moskowitz, Geophys. J. Int. 224, 1314 (2020); https://doi.org/10.1093/gji/ggaa516.
  6. 6. S. Iida, Philos. Mag. B 42, 349 (1980); https://doi.org/10.1080/01418638008221876.
  7. 7. O¨ . O¨zdemir, D. J. Dunlop, and T. S. Berqu´o, Geochem. Geophys. Geosyst. 9, Q10Z01 (2008); https://doi.org/10.1029/2008GC002110.
  8. 8. M. A. Chuev, I. N. Mishchenko, S. P. Kubrin, and T. A. Lastovina, JETP Lett. 105, 700 (2017); https://doi.org/10.1134/S0021364017110042.
  9. 9. T. Kim, S. Lim, J. Hong, S. G. Kwon, J. Okamoto, Z. Y. Chen, J. Jeong, S. Kang, J. C. Leiner, J. T. Lim, C. S. Kim, D. J. Huang, T. Hyeon, S. Lee, and J.-G. Park, Sci. Rep. 8, 5092 (2018); https://doi.org/10.1038/s41598-018-23456-6.
  10. 10. Yu. F. Krupyanskii and I. P. Suzdalev, Le Journal de Physique Colloques 35, C6-407 (1974); https://doi.org/10.1051/jphyscol:1974679.
  11. 11. D. Kub´aniova, L. Kubiˇckov´a, T. Kmjeˇc, K. Z´avˇeta, D. Niˇznˇansky´, P. Br´azda, M. Klementov´a, and J. Kohout, J. Magn. Magn. Mat. 475, 611 (2019); https://doi.org/10.1016/j.jmmm.2018.11.126.
  12. 12. J. Lee, S. G. Kwon, J.-G. Park, and T. Hyeon, Nano Lett. 15, 4337 (2015); https://doi.org/10.1021/acs.nanolett.5b00331.
  13. 13. E. Tronc, C. Chan´eac, and J. P. Jolivet, J. Solid State Chem. 139, 93 (1998); https://doi.org/10.1006/jssc.1998.7817.
  14. 14. M. Gich, C. Frontera, A. Roig, E. Taboada, E. Molins, H. R. Rechenberg, J. D. Ardisson, W. A. A. Macedo, C. Ritter, V. Hardy, J. Sort, V. Skumryev, and J. Nogu´es, Chemistry of Materials 18, 3889 (2006); https://doi.org/10.1021/cm060993l.
  15. 15. S. Ohkoshi, A. Namai, T. Yamaoka, M. Yoshikiyo, K. Imoto, T. Nasu, S. Anan, Y. Umeta, K. Nakagawa, and H. Tokoro, Sci. Rep. 6, 27212 (2016); https://doi.org/10.1038/srep27212
  16. 16. J. L. Garcia-Mun˜oz, A. Romaguera, F. Fauth, J. Nogu´es, and M. Gich, Chem. Mater. 29, 9705 (2017); https://doi.org/10.1021/acs.chemmater.7b03417.
  17. 17. Y.-C. Tseng, N. M. Souza-Neto, D. Haskel, M. Gich, C. Frontera, A. Roig, M. van Veenendaal, and J. Nogu´es, Phys. Rev. B 79, 094404 (2009); https://doi.org/10.1103/PhysRevB.79.094404.
  18. 18. D. A. Balaev, Yu. V. Knyazev, S. V. Semenov, A. A. Dubrovskiy, A. I. Lasukov, S. A. Skorobogatov, E. D. Smorodina, V. L. Kirillov, and O. N. Martyanov, Ceramics International 51, 650 (2025); https://doi.org/10.1016/j.ceramint.2024.11.048
  19. 19. Y. V. Knyazev, D. A. Balaev, V. L. Kirillov, O. A. Bayukov, and O. N. Martyanov, JETP Lett. 108, 527 (2018); https://doi.org/10.1134/S0021364018200092.
  20. 20. Yu.V. Knyazev, A. I. Chumakov, A. A. Dubrovskiy, S. V. Semenov, I. Sergueev, S. S. Yakushkin, V. L. Kirillov, O. N. Martyanov, and D. A. Balaev, Phys. Rev. B 101, 094408 (2020); https://doi.org/10.1103/PhysRevB.101.094408.
  21. 21. J. Kohout, P. Br´azda, K. Z´avˇeta, D. Kub´aniov´a, T. Kmjeˇc, L. Kub´aˇckov´a, M. Klementov´a, E. Sˇantav´a, and A. Lanˇcok, J. Appl. Phys. 117, 17D505 (2015); https://doi.org/10.1063/1.4907610.
  22. 22. Y. V. Knyazev, A. I. Chumakov, A. A. Dubrovskiy, S. V. Semenov, S. S. Yakushkin, V. L. Kirillov, O. N. Martyanov, and D. A. Balaev, JETP Lett. 110, 613 (2019); https://doi.org/10.1134/S0021364019210082.
  23. 23. G. V. Smirnov, Uspekhi Fizicheskih Nauk 194, 291 (2024); https://doi.org/10.3367/UFNr.2023.09.039569.
  24. 24. R. R¨ohlsberger, Nuclear Condensed Matter Physics with Synchrotron Radiation, Springer Berlin Heidelberg, Berlin, Heidelberg (2005); https://doi.org/10.1007/b86125.
  25. 25. R. R¨ohlsberger, J. Bansmann, V. Senz, K. L. Jonas, A. Bettac, K. H. Meiwes-Broer, and O. Leupold, Phys. Rev. B 67, 245412 (2003); https://doi.org/10.1103/PhysRevB.67.245412.
  26. 26. S. S. Yakushkin, D. A. Balaev, A. A. Dubrovskiy, S. V. Semenov, Y. V. Knyazev, O. A. Bayukov, V. L. Kirillov, R. D. Ivantsov, I. S. Edelman, and O. N. Martyanov, Ceramics International 44, 17852 (2018); https://doi.org/10.1016/j.ceramint.2018.06.254.
  27. 27. Y. V. Shvyd’ko, Hyperfine Interactiions 125, 173 (2000); https://doi.org/10.1023/A:1012633620524 .
  28. 28. J.-L. Rehspringer, S. Vilminot, D. Niznansky, K. Zaveta, C. Estournes, and M. Kurmoo, Hyperfine Interactions 166, 475 (2006); https://doi.org/10.1007/s10751-006-9311-8.
  29. 29. K. Haneda and A. H. Morrish, Phys. Lett. A 64(2), 259 (1977); https://doi.org/10.1016/0375-9601 (77)90736-8.
  30. 30. M. Kurmoo, J.-L. Rehspringer, A. Hutlova, C. D’Orl´eans, S. Vilminot, C. Estourn´es, and D. Niznansky, Chemistry of Materials 17, 1106 (2005); https://doi.org/10.1021/cm0482838.
  31. 31. A. A. Dubrovskiy, D. A. Balaev, K. A. Shaykhutdinov, O. A. Bayukov, O. N. Pletnev, S. S. Yakushkin, G. A. Bukhtiyarova, and O. N. Martyanov, J. Appl. Phys. 118, 213901 (2015); https://doi.org/10.1063/1.4936838.
  32. 32. P. Gu¨tlich, E. Bill, and A. X. Trautwein, M¨ossbauer spectroscopy and transition metal chemistry: fundamentals and applications, Springer Science & Business Media (2010); https://doi.org/10.1007/978-3-540-88428-6.
  33. 33. M. Pol´a˜skov´a, O. Malina, J. Tuˇcek, and P. Jakubec, Nanoscale 14, 5501 (2022); https://doi.org/10.1039/D2NR00392A.
  34. 34. Z. Ma, A. Romaguera, F. Fauth, J. Herrero-Mart´ın, J. L. Garcia-Mun˜oz, and M. Gich, J. Magn. Magn. Mat. 506, 166764 (2020); https://doi.org/10.1016/j.jmmm.2020.166764.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека