ОФНПисьма в Журнал экспериментальной и теоретической физики JETP Letters (Journal of Experimental and Theoretical Physics Letters)

  • ISSN (Print) 0370-274X
  • ISSN (Online) 3034-5766

First law of de Sitter thermodynamics

Код статьи
S0370274X25050146-1
DOI
10.31857/S0370274X25050146
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 121 / Номер выпуска 9-10
Страницы
806-808
Аннотация
The de Sitter state has a special symmetry: it is homogeneous, and its curvature is constant in space. Since all the points in the de Sitter space are equivalent, this state is described by local thermodynamics. This state has the local temperature T = H/π (which is twice the Gibbons–Hawking temperature), the local entropy density, the local energy density, and also the local gravitational degrees of freedom – the scalar curvature R and the effective gravitational coupling K. On the other hand, there is the cosmological horizon, which can be also characterized by the thermodynamic relations. We consider the connections between the local thermodynamics and the thermodynamics of the cosmological horizon. In particular, there is the holographic connection between the entropy density integrated over the Hubble volume and the Gibbons–Hawking entropy of the horizon, Svolume = Shorizon = A/4G. We also consider the first law of thermodynamics in these two approaches. In the local thermodynamics, on the one hand, the first law is valid for an arbitrary volume V of de Sitter space. On the other hand, the first law is also applicable to the thermodynamics of the horizon. In both cases, the temperature is the same. This consideration is extended to the contracting de Sitter with its negative entropy, Svolume = Shorizon = −A/4G.
Ключевые слова
Дата публикации
16.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
15

Библиография

  1. 1. G. Gibbons and S. Hawking, Phys. Rev. D 15, 2738 (1977).
  2. 2. T. Padmanabhan, Class. Quantum Gravity 19, 5387 (2002).
  3. 3. I. H. Brevik, S. Nojiri, S. D. Odintsov, and L. Vanzo, Phys. Rev. D 70, 043520 (2004).
  4. 4. T. Markkanen, Eur. Phys. J. C 78, 97 (2018).
  5. 5. E. T. Akhmedov, K. V. Bazarov, D. V. Diakonov, and U. Moschella, Phys. Rev. D 102, 085003 (2020).
  6. 6. D. A. Galante, PoS(Modave2022)003.
  7. 7. B. Banihashemi, T. Jacobson, A. Svesko, and M. Visser, JHEP 01, 054 (2023).
  8. 8. D. V. Diakonov, arXiv:2504.01942 [hep-th].
  9. 9. P. Painlev´e, C. R. Acad. Sci. (Paris) 173, 677 (1921).
  10. 10. A. Gullstrand, Arkiv. Mat. Astron. Fys. 16, 1 (1922).
  11. 11. G. E. Volovik, JETP Lett. 90, 1 (2009).
  12. 12. G. E. Volovik, arXiv:2410.04392.
  13. 13. H. Maxfield and Z. Zahraee, JHEP 11, 093 (2022).
  14. 14. J. Bros, H. Epstein, and U. Moschella, JCAP 0802, 003 (2008).
  15. 15. A. M. Polyakov, Nucl. Phys. B 834, 316 (2010).
  16. 16. G. E. Volovik, Symmetry 16, 763 (2024).
  17. 17. G. E. Volovik, Pis’ma v ZhETF 119, 560 (2024) [G. E. Volovik, JETP Lett. 119, 564 (2024)].
  18. 18. Ya. B. Zel’dovich, JETP 14, 1143 (1962).
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека