ОФНПисьма в Журнал экспериментальной и теоретической физики JETP Letters (Journal of Experimental and Theoretical Physics Letters)

  • ISSN (Print) 0370-274X
  • ISSN (Online) 3034-5766

Аморфизация кремния под воздействием ультракоротких лазерных импульсов среднего ИК диапазона

Код статьи
S0370274X25050058-1
DOI
10.31857/S0370274X25050058
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 121 / Номер выпуска 9-10
Страницы
737-741
Аннотация
Проведено экспериментальное исследование процесса аморфизации поверхности пластины кристаллического кремния Si(111) толщиной 380 мкм под воздействием ультракоротких лазерных импульсов (длительность – 150 фс) среднего инфракрасного диапазона (4.0–5.4 мкм) с варьируемой плотностью энергии и экспозицией. Для данного спектрального диапазона были измерены пороговые значения поверхностной плотности энергии для аморфизации кремния. Была установлена зависимость объемной доли и толщины аморфной фазы материала от поверхностной плотности энергии и количества импульсов лазерного излучения для длины волны 5000 нм.
Ключевые слова
Дата публикации
16.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
13

Библиография

  1. 1. D. A. Belforte, PhotonicsViews 17, 35 (2020).
  2. 2. D. B¨auerle, Laser Processing and Chemistry, Springer, Berlin, Heidelberg (2011).
  3. 3. А.А. Ионин, С. И. Кудряшов, Л. В. Селезнев, Д. В. Синицын, А. Ф. Бункин, В. Н. Леднев, С.М. Першин, ЖЭТФ 143, 403 (2013).
  4. 4. J. Bonse, H. Sturm, D. Schmidt, and W. Kautek, Appl. Phys. A 71, 657 (2000).
  5. 5. R. Yen, J. M. Liu, H. Kurz, and N. Bloembergen, Appl. Phys. A 27, 153 (1982).
  6. 6. J. Bonse, S. Baudach, J. Kruger, W. Kautek, and M. Lenzner, Appl. Phys. A 74, 19 (2002).
  7. 7. J. Siegel, A. Schropp, J. Solis, C. N. Afonso, and M. Wuttig, Appl. Phys. Lett. 84, 2250 (2004).
  8. 8. M. Wuttig and N. Yamada, Nature Mater 6, 824 (2007).
  9. 9. F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, Nature Nanotech. 9, 19 (2014).
  10. 10. M. Notomi, Rep. Prog. Phys. 73, 096501 (2010).
  11. 11. Y. Siegal, E. N. Glezer, L. Huang, and E. Mazur, Annu. Rev. Mater. Res. 25, 223 (1995).
  12. 12. A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, P. Balcou, E. Forster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, Nature 410, 65 (2001).
  13. 13. J. Bonse, S. M. Wiggins, and J. Solis, Appl. Phys. A 80, 243 (2005).
  14. 14. T. Zier, E. S. Zijlstra, and M. E. Garcia, Appl. Phys. A 117, 1 (2014).
  15. 15. P. Stampfli and K. H. Bennemann, Phys. Rev. B 42, 7163 (1990).
  16. 16. K. Sokolowski-Tinten and D. von der Linde, Phys. Rev. B 61, 2643 (2000).
  17. 17. J. Bonse, A. Rosenfeld, and J. Kruger, Applied Surface Science 257, 5420 (2011).
  18. 18. P. Lorazo, L. J. Lewis, and M. Meunier, Phys. Rev. B 73, 134108 (2006).
  19. 19. M. V. Shugaev, M. He, Y. Levy, A. Mazzi, A. Miotello, N. M. Bulgakova, and L. V. Zhigilei, in Handbook of Laser Microand Nano-Engineering, ed. by K. Sugioka, Springer International Publishing, Cham (2020), p. 1.
  20. 20. A. G. Cullis, N. G. Chew, H. C. Webber, and D. J. Smith, J. Cryst. Growth 68, 624 (1984).
  21. 21. Е. И. Штырков, И. Б. Хайбуллин, М. М. Зарипов, М. Ф. Галятудинов, Р. М. Баязитов, Физика и техника полупроводников 9, 2000 (1975).
  22. 22. A. L. Robinson, Science 226, 329 (1984).
  23. 23. M. O. Thompson, G. J. Galvin, J. W. Mayer, P. S. Peercy, J. M. Poate, D. C. Jacobson, A. G. Cullis, and N. G. Chew, Phys. Rev. Lett. 52, 2360 (1984).
  24. 24. M. Garcia-Lechuga, N. Casquero, J. Siegel, J. Solis, R. Clady, A. Wang, O. Ut´eza, and D. Grojo, Laser Photonics Rev. 18, 2301327 (2024).
  25. 25. S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors, Springer US, Boston, MA (1999).
  26. 26. M. Garcia-Lechuga, N. Casquero, A. Wang, D. Grojo, and J. Siegel, Adv. Opt. Mater. 9, 2100400 (2021).
  27. 27. J. Bonse, Appl. Phys. A 84, 63 (2006).
  28. 28. C. Florian, D. Fischer, K. Freiberg, M. Duwe, M. Sahre, S. Schneider, A. Hertwig, J. Kruger, M. Rettenmayr, U. Beck, A. Undisz, and J. Bonse, Materials 14, 1651 (2021).
  29. 29. M. Garcia-Lechuga and D. Grojo, Open Res. Eur. 1, 7 (2021).
  30. 30. S. I. Kudryashov, T. Pflug, N. I. Busleev, M. Olbrich, A. Horn, M. S. Kovalev, and N. G. Stsepuro, Opt. Mater. Express 11, 1 (2021).
  31. 31. R. Tsu, J. Gonzalez-Hernandez, S. S. Chao, S. C. Lee, and K. Tanaka, Appl. Phys. Lett. 40, 534 (1982).
  32. 32. D. M. Zhigunov, G. N. Kamaev, P. K. Kashkarov, and V. A. Volodin, Appl. Phys. Lett. 113, 023101 (2018).
  33. 33. I. D. Wolf, Semicond. Sci. Technol. 11, 139 (1996).
  34. 34. C. Smit, R. A. C. M. M. van Swaaij, H. Donker, A. M. H. N. Petit, W. M. M. Kessels, and M. C. M. van de Sanden, J. Appl. Phys. 94, 3582 (2003).
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека