- PII
- S0370274X25040106-1
- DOI
- 10.31857/S0370274X25040106
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 121 / Issue number 7-8
- Pages
- 605-610
- Abstract
- На примере двумерного антиферромагнитика – бислоя CrI3 рассмотрена специфика метамагнитного перехода в ван-дер-ваальсовых антиферромагнетиках. Отдельное внимание уделено разновидности магнитоэлектрического эффекта, проявляющегося, как вызванный электрическим полем переход из антиферромагнитного в ферромагнитное состояние в магнитном поле смещения, близким к критическому полю перехода. В качестве механизма эффекта предложен линейный магнитоэлектрический эффект, разрешенный симметрией кристалла. На основе теоретико-группового подхода получена структура тензора магнитоэлектрического эффекта в CrI3 и подобных ему кристаллах, предполагающая, что в окрестности спин-флоп перехода наряду с продольным возможен и поперечный магнитоэлектрический эффект, при условии уменьшения магнитной анизотропии до величин, сравнимых с полем межслойного обмена. Наличие поперечного магнитоэлектрического эффекта важно в контексте обнаружения электроиндуцированных гиромагнитных эффектов в ван-дер-ваальсовых материалах.
- Keywords
- Date of publication
- 16.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 14
References
- 1. Ch. Gong, L. Li, Zh. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, Ch. Wang, Y. Wang, Z.Q. Qiu, R. J. Cava, S.G. Louie, J. Xia, and X. Zhang, Nature 546, 265 (2017).
- 2. B. Huang, G. Clark, E. Navarro-Moratalla, D.R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M.A. McGuire, D.H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu, Nature 546(7657), 270 (2017).
- 3. F. Miao, Sh. J. Liang, and B. Cheng, npj Quantum Mater. 6(1), 2 (2021).
- 4. A.P. Pyatakov and Z.A. Pyatakova, J. Magn. Magn. Mater. 587, 171255 (2023).
- 5. K. Wang, T. Hu, F. Jia, G. Zhao, Y. Liu, I.V. Solovyev, A.P. Pyatakov, A.K. Zvezdin, and W. Ren, Appl. Phys. Lett. 114(9), 092405 (2019).
- 6. J. Chu, Y. Wang, X. Wang, K. Hu, G. Rao, Ch. Gong, Ch. Wu, H. Hong, X. Wang, K. Liu, Ch. Gao, and J. Xiong, Adv. Mater. 33(5), 2004469 (2021).
- 7. K. Du, F.-T. Huang, K. Gamage, J. Yang, M. Mostovoy, and S.-W. Cheong, Adv. Mater. 35(39), 2303750 (2023).
- 8. L. Qiao, J. Sladek, V. Sladek, A. S. Kaminskiy, A.P. Pyatakov, and W. Ren, Phys. Rev. B 109(1), 1 (2024).
- 9. Sh. Jiang, J. Shan, and K. F. Mak, Nat. Mater. 17, 406 (2018).
- 10. D. Zhong, K. L. Seyler, X. Linpeng, R. Cheng, N. Sivadas, B. Huang, E. Schmidgall, T. Taniguchi, K. Watanabe, M.A. McGuire, W. Yao, D. Xiao, K.M.C. Fu, and X.Xu, Sci. Adv. 3(5), e1603113 (2017).
- 11. M. Javaid, P.D. Taylor, Sh.A. Tawfik, and M. J. S. Spencer, Nanoscale 14(11), 4114 (2022).
- 12. Z. Zhang, D. Yang, H. Li, C. Li, Zh. Wang, L. Sun, and H. Yang, Neuromorphic Computing and Engineering 2, 032004 (2022).
- 13. A. Edstr¨om, D. Amoroso, S. Picozzi, P. Barone, and M. Stengel, Phys. Rev. Lett. 128, 177202 (2022).
- 14. S. Li, Zh. Ye, X. Luo, Ga. Ye, H.H. Kim, B. Yang, Sh. Tian, Ch. Li, H. Lei, A.W. Tsen, K. Sun, R. He, and L. Zhao, Phys. Rev. X 10(1), 11075 (2020).
- 15. R. Xu and X. Zou, J. Phys. Chem. Lett. 11(8), 3152 (2020).
- 16. N.C. Frey, H. Kumar, B. Anasori, Y. Gogotsi, and V.B. Shenoy, ACS Nano 12(6), 6319 (2018).
- 17. A. Zong, Q. Zhang, F. Zhou et al. (Collaboration), Nature 620, 988 (2023).
- 18. M.A. Koliushenkov and A.P. Pyatakov, EPL (Europhysics Letters) 147, 36002 (2024).
- 19. Е.А. Туров, Успехи физических наук 164(3), 325 (1994).
- 20. Y. Lai, L. Ke, J. Yan, R.D. McDonald, and R. J. McQueeney, Phys. Rev. B 103(18), 184429 (2021).
- 21. В. В. Вальков, А.О. Злотников, А. Гамов, Н.А. Федорова, Ф.Н. Томилин, Письма в ЖЭТФ 120(7), 521 (2024).