RAS PhysicsПисьма в Журнал экспериментальной и теоретической физики JETP Letters (Journal of Experimental and Theoretical Physics Letters)

  • ISSN (Print) 0370-274X
  • ISSN (Online) 3034-5766

Odnofotonnoe izluchenie v S-diapazone v tsilindricheskom mikrorezonatore s kvantovymi tochkami InAs/InGaAs

PII
S0370274X25020037-1
DOI
10.31857/S0370274X25020037
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 121 / Issue number 3-4
Pages
189-193
Abstract
В работе реализован источник однофотонного излучения для телекоммуникационного С-диапазона на основе эпитаксиальных квантовых точек InAs/InGaAs, выращенных методом молекулярно-пучковой эпитаксии. Использование высококонтрастных распределенных брэгговских отражателей AlGaAs/GaAs и плазмохимического травления позволило изготовить микрорезонаторные структуры, расчетная эффективность вывода излучения из которых в числовую апертуру 0.7 составила 15 %. Измеренное значение корреляционной функции второго порядка g(2) (0) составило 0.14 при средней интенсивности однофотонного излучения на первой линзе порядка 1 МГц. Полученные результаты свидетельствуют о возможности использования исследуемого источника однофотонного излучения в системах квантовой криптографии.
Keywords
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
16

References

  1. 1. T. Heindel, J. Kim, N. Gregersen, A. Rastelli, and S. Reitzenstein, Adv. Opt. Photonics 15, 613 (2023).
  2. 2. M. Zahidy, M. T. Mikkelsen, R. Muller, B. De Lio, M. Krehbiel, Y. Wang, N. Bart, A. D. Wieck, A. Ludwig, M. Galili, S. Forchhammer, P. Lodahl, L. K. Oxenl0we, D. Bacco, and L. Midolo, npj Quantum Inf. 10, 2 (2024).
  3. 3. D. A. Vajner, L. Rickert, T. Gao, K. Kaymazlar, and T. Heindel, Adv. Quantum Technol. 5, 2100116 (2022).
  4. 4. E. Chae, J. Choi, and J. Kim, Nano Converg. 11, 11 (2024).
  5. 5. M. Benyoucef, M. Yacob, J. P. Reithmaier, J. Kettler, and P. Michler, Appl. Phys. Lett. 103, 162101 (2013).
  6. 6. O. Fedorych, C. Kruse, A. Ruban, D. Hommel, G. Bacher, and T. Kümmell, Appl. Phys. Lett. 100, 61114 (2012).
  7. 7. R. Li, L. Tang, Q. Zhao, K. S. Teng, and S. P. Lau, Chem. Phys. Lett. 742, 137127 (2020).
  8. 8. C. Santori, S. Güotzinger, Y. Yamamoto, S. Kako, K. Hoshino, and Y. Arakawa, Appl. Phys. Lett. 87, 051916 (2005).
  9. 9. M. Zimmer, A. Trachtmann, M. Jetter, and P. Michler, J. Cryst. Growth 605, 127081 (2023).
  10. 10. Y. Yu, S. Liu, CM. Lee, P. Michler, S. Reitzenstein, K. Srinivasan, E. Waks, and J. Liu, Nat. Nanotechnol. 18, 1389 (2023).
  11. 11. R. P. Leavitt and C. J. K. Richardson, J. Vac. Sci. Technol. B, 33, 051202 (2015).
  12. 12. P. Holewa, D.A. Vajner, E. Zieba-OstOj et al. (Collaboration), Nat. Commun. 15, 3358 (2024).
  13. 13. M. Paul, F. Olbrich, J. Hüoschele, S. Schreier, J. Kettler, S. L. Portalupi, M. Jetter, and P. Michler, Appl. Phys. Lett. 111, 033102 (2017).
  14. 14. P. Wyborski, P. Podemski, P. A. Wroński, F. Jabeen, S. Höfling, and G. Sek, Materials (Basel) 15, 1071 (2022).
  15. 15. P. Wyborski, M. Gawelczyk, P. Podemski, P. A. Wronski, M. Pawlyta, S. Gorantla, F. Jabeen, S. Hofling, and G. Sek, Phys. Rev. Appl. 20, 044009 (2023).
  16. 16. P. A. Wroński, P. Wyborski, A. Musial, P. Podemski, G. Sek, S. Hofling, and F. Jabeen, Materials (Basel) 14, 5221 (2021).
  17. 17. T. Smolka, K. Posmyk, M. Wasiluk, P. Wyborski, M. Gawelczyk, P. Mrowi’nski, M. Mikulicz, A. Zieli’nska, J. P. Reithmaier, A. Musial, and M. Benyoucef, Materials (Basel) 14, 6270 (2021).
  18. 18. H. Wang, Y. M. He, T. H. Chung et al. (Collaboration), Nat. Photonics 13, 770 (2019).
  19. 19. S. V. Sorokin, G. V. Klimko, I. V. Sedova, A. I. Galimov, Yu. V. Serov, D. A. Kirilenko, N. D. Prasolov, and A. A. Toropov, JETP Lett. 120, 694 (2024).
  20. 20. A. Galimov, M. Bobrov, M. Rakhlin, Yu. Serov, D. Kazanov, A. Veretennikov, G. Klimko, S. Sorokin, I. Sedova, N. Maleev, Yu. Zadiranov, M. Kulagina, Yu. Guseva, D. Berezina, E. Nikitina, and A. Toropov, Nanomaterials 13, 1572 (2023).
  21. 21. M. A. Bobrov, S. A. Blokhin, N. A. Maleev, A. G. Kuz’menkov, A. A. Blokhin, A. P. Vasil’ev, Yu. A. Guseva, M. V. Rakhlin, A. I. Galimov, Yu. M. Serov, S. I. Troshkov, V. M. Ustinov, and A. A. Toropov, JETP Lett. 116, 613 (2022).
  22. 22. J. S. Tsang, C. P. Lee, S. H. Lee, K. L. Tsai, C. M. Tsai, and J. C. Fan, J. Appl. Phys. 79, 664 (1996).
  23. 23. P. A. Dalgarno, J. McFarlane, D. Brunner, R. W. Lambert, B. D. Gerardot, R. J. Warburton, K. Karrai, A. Badolato, and P. M. Petroff, Appl. Phys. Lett. 92, 90 (2008).
  24. 24. P. Holewa, A. Sakanas, U. M. Guür, P. Mrowinński, A. Huck, B. Y. Wang, A. Musial, K. Yvind, N. Gregersen, M. Syperek, and E. Semenova, ACS Photonics 9, 2273 (2022).
  25. 25. E. Peter, S. Laurent, J. Bloch, J. Hours, S. Varoutsis, I. Robert-Philip, A. Beveratos, A. Lemaître, A. Cavanna, G. Patriarche, P. Senellart, and D. Martrou, Appl. Phys. Lett. 90, 223118 (2007).
  26. 26. S. Fischbach, A. Schlehahn, A. Thoma, N. Srocka, N. Gissibl, N. Ristok, S. Thiele, A. Kaganskiy, A. Strittmatter, T. Heindel, S. Rodt, A. Herkommer, H. Giessen, and S. Reitzenstein, ACS Photonics 4, 1327 (2017).
  27. 27. W. Zhan, S. Ishida, J. Kwoen, K. Watanabe, S. Iwamoto, and Y. Arakawa, Phys. Status Solidi Basic Res. 257, 1900392 (2020).
  28. 28. S. Golovynskyi, O. I. Datsenko, L. Seravalli, S. V. Kondratenko, G. Trevisi, P. Frigeri, B. Li, and J. Qu, Semicond. Sci. Technol. 35, 095022 (2022).
  29. 29. H. S. Chang, W. Y. Chen, T. M. Hsu, T. P. Hsieh, J. I. Chyi, And W. H. Chang, Appl. Phys. Lett. 94, 2007 (2009).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library