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Рассматривается радиационный теплообмен толстых однородных и изотропных пластин при отно-
сительном нерелятивистском латеральном движении.Особое внимание уделяется свойствам симметрии
системы с одинаковыми или различными параметрами.Показано,что в квазистационарном режиме дви-
жущаяся или покоящаяся пластины золота могут иметь значительный перегрев одна относительно дру-
гой.Эти особенности могут быть использованы для экспериментального исследования диссипативных
сил Казимира- Лифшица.
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Пионерская идея о том,что электромагнитный ва-
куум обладает квантовыми свойствами, была вы-
двинута Х. Казимиром в 1948 г. [1]. С тех пор мно-
го усилий было затрачено на разработку кванто-
вой теории света и явлений, вызванных квантово-
оптическими флуктуациями, включая силы Казими-
ра, Казимира–Полдера [2] и Лифшица [3], которые
действуют между атомами, молекулами и матери-
альными поверхностями, а также между макроско-
пическими телами. Широко известные монографии
[4–7] дают представление лишь о сравнительно ма-
лой части результатов, накопленных в этой области.
Некоторые последние достижения физики Казими-
ра и флуктуационно-электромагнитного взаимодей-
ствия отражены в тематической коллекции, посвя-
щенной 75-летию эффекта Казимира (см. [8] и цити-
руемые там статьи). Ряд новых интригующих фи-
зических идей и экспериментальных предложений
недавно обсуждался в [9–19].

Радиационно-фрикционный нагрев Казимира–
Лифшица обусловлен флуктуационно-электромаг-
нитным взаимодействием между движущимися
незаряженными телами, разделенными вакуум-
ным зазором. Примером является классическая
конфигурация из двух толстых пластин [20] или
параллельных зеркал [21], находящихся в отно-
сительном тангенциальном движении. В наших
работах [22–26] обращалось внимание на низкотем-
пературное возрастание силы трения Казимира–

1)См. дополнительный материал к данной статье на сайте
нашего журнала www.jetpletters.ac.ru

1)e-mail: gv_dedkov@mail.ru

Лифшица для металлических тел и возможность
их “аномального” нагрева: частицы в конфигурации
частица-пластина и пластины в конфигурации двух
пластин. Эти особенности возникают в результате
теплового и динамического неравновесия, усугуб-
ляемого температурной зависимостью удельного
сопротивления металлов при температурах зна-
чительно ниже температуры Дебая. Они могут
сыграть решающую роль в сценарии измерения
силы трения Казимира–Лифшица через тепловой
нагрев взаимодействующих тел, обсуждавшемся
в [24, 25]. Прямое экспериментальное измерение
этой силы до сих пор является нерешенной при-
оритетной задачей. Однако несколько важных
моментов остались недостаточно ясными. К ним
относятся свойства симметрии системы пластин
при одинаковых и разных параметрах материалов,
соотношения между силой трения и скоростью
нагрева каждой пластины, возможные сценарии
нагрева. Возможно ли достичь квазистационарного
состояния, когда движущаяся пластина горячее
неподвижной и наоборот, и насколько велика может
быть разность температур между ними в зависимо-
сти от скорости, свойств материалов и начальных
условий?

В стандартной формулировке задачи (см. рис. 1)
пластины рассматриваются как однородные и изо-
тропные немагнитные металлы с диэлектрическими
проницаемостями ε1, ε2 и магнитными проницаемо-
стями µ1 = µ2 = 1. Диэлектрические проницаемо-
сти зависят от частоты ω и локальных температур
T1 (неподвижная пластина) и T2 (подвижная пласти-
на). Пластина 1 соответствует лабораторной системе
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отсчета, а пластина 2 движется с постоянной нере-
лятивистской скоростью V ≪ c (c – скорость света).

Рис. 1. Конфигурация системы

Следуя [26] в рамках теории Полевого [20] (неза-
висимо от условия µ1 = µ2 = 1), векторы Пойнтинга
P1 и P2, описывающие радиационные потоки тепла
от пластины 1 и пластины 2, и мощность FxV дисси-
пативной тангенциальной силы определяются выра-
жениями (все величины отнесены к единице площади
поверхности пластин)
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k2 − ε1,2µ1,2ω2/c2, тильда над q2 и µ2 означает,
что эти величины берутся при ω = ω−, слагаемые
(µ → ε) имеют такой же вид, как и первые члены в
(1)–(3) с соответствующими заменами, температуры
T1 и T2 выражены в энергетических единицах, ~ –
постоянная Планка.

Переход от исходных выражений Полевого
для P1 и P2 (см. формулы (3)–(5) в [20] или

(2)–(4) в [26]) выполняется с учетом тождеств
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Из (2)–(4) легко видеть, что

P1 + P2 = FxV. (5)

Знак силы Fx определяет направление ее действия
на пластину 2, причем условие Fx < 0 означает,что
тангенциальная сила является тормозящей. В свою
очередь, отрицательный знак P1 или P2 соответству-
ет нагреву. Выражения (1) и (3) полностью согла-
суются с известными результатами [7, 11, 26–30] (см.
также ссылки) для скорости лучистого теплообмена
пластин в состоянии покоя и силы трения Казимира–
Лифшица при относительном нерелятивистском дви-
жении.

Однако до сих пор зависимости P1 и P2 от скоро-
сти V практически не обсуждались. При V ∼ 1м/с
и менее динамические вклады в P1 и P2 пропорцио-
нальны V 2, будучи существенно меньше, чем не за-
висящие от V составляющие, если между пластина-
ми имеется разница температур (предполагая близ-
кие к нормальным тепловые условия). В этом случае
P1 и P2 в (5) почти полностью уничтожаются, имея
разные знаки, а мощность и величина силы трения
малы. Однако для металлических пластин ситуация
кардинально изменяется при низких температурах,
значительно меньших температуры Дебая θD, и/или
с ростом V (см. дополнительные материалы). Тогда
модуль FxV в (5) становится сравним с модулями P1

и P2 или превышает их по величине. Кроме того, из-
за уменьшения теплоемкости металлов при низких
температурах увеличивается скорость нагрева пла-
стин, что благоприятствует экспериментальным из-
мерениям эффекта нагрева. В связи с этим весьма
важными для численных расчетов и контроля ре-
зультатов являются свойства симметрии выражений
(1)–(3), не сразу заметные на первый взгляд. Чтобы
привести выражения (1), (2) к симметричному виду,
сделаем в (2) замену переменных ω− = ω−kxV → ω′,
ω → ω′ + kxV , и ω′ → ω. В результате получим
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где q̃1, µ̃1 и другие величины с тильдой теперь
берутся при ω+ = ω + kxV . Следует отметить,
что при этом преобразовании величина q не из-
меняется. Легко также убедиться в том, что
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Как непосредственно видно из (7), (8), если пласти-
ны изготовлены из одного и того же материала, а
εi, µi зависят только от локальных температур Ti
(i = 1, 2), то P2(T1, T2, V ) = P1(T2, T1, V ). Этот ре-
зультат получается простой перестановкой индексов
1 ↔ 2 в (8). C другой стороны, при T1 = T2 = T

из (7), (8) следует P1 = P2 в полном соответствии
с принципом относительности и неразличимостью
пластин. Если же параметры εi, µi индивидуальны
для каждой пластины, то соотношение симметрии
имеет вид P1(a, 1, 2, V ) = P2(a, 2, 1, V ), где переста-
новка индексов 1 ↔ 2 относится ко всем величи-
нам, характеризующим пластины 1 и 2, но при этом
P1 6= P2 при T1 = T2 = T . Следует также отметить,
что в (7), (8) все частоты ω− можно эквивалентно
заменить на ω+. Это отражает независимость P1 и
P2 от направления движения. Платой за симметрию
выражений (7), (8) является тот факт, что формула
(5) теперь менее очевидна, чем при суммировании
выражений (2) и (3). Учитывая аналитические свой-
ства подынтегрального выражения (3), получим
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Выражения (7)–(9) имеют общий характер и дают
исчерпывающее описание нагрева и трения, обуслов-
ленных флуктуационно-электромагнитным взаимо-
действием в системе двух пластин.

Следует специально отметить,что аналогичные
выражения для скоростей нагрева пластин, приве-
денные в наших недавних работах [24, 25], а также
выражения Полевого (16) и (17) в [20] являются недо-
статочно корректными из-за нарушенной симметрии
при записи тепловых потоков P1 и P2, произошед-
шей в результате модификации пределов интегриро-
вания по частотам. И хотя на необходимость такой
симметрии обращалось внимание в [24, 25], деталь-
ный анализ всех выражений, упомянутых выше, не
проводился. Между тем, и (16), (17) в [20], и анало-
гичные им формулы (2), (3) в [24, 25] удовлетворяют
базовому соотношению (5) для силы трения. Более
того, взятые по отдельности, остаются в силе и фор-
мулы для силы трения и скорости нагрева неподвиж-
ной пластины. Отсутствие симметрии формул (16) и
(17) в [20] и (2), (3) в [24, 25] легко увидеть, пола-
гая T1 = T1 = T в соответствующих выражениях. В
этом случае P1 6= P2. В итоге, при нерелятивистских
скоростях V ≪ c пластины 2 условиям симметрии
и соотношению (5) удовлетворяют, кроме (3) и (4) в
[20], только формулы (7)–(9) настоящей статьи.

Для полноты картины укажем также на неточно-
сти в значениях численных коэффициентов общих
интегральных выражений (2), (3) и (5) в работах
[24, 25] и формул (20), (21) в [26]. Все они должны
быть исправлены в соответствии с выражениями (7)–
(9). Эти поправки, однако, не изменяют качествен-
ных выводов работ [24–26].

Следующий важный вопрос касается сценариев
тепловой эволюции. Как отмечалось в [24, 25], про-
цесс радиационного нагрева пластин гораздо медлен-
нее процесса диффузии тепла. Если предположить,
что толщина пластин равна b, то характерное вре-
мя диффузии тепла τd в нормальном направлении
будет τd = cρb2/λ, где λ – коэффициент теплопро-
водности, c – удельная теплоемкость, ρ – плотность.
При b = 500мкм и типичных параметрах золота [31]:
λ = 3200Вт/м ·K, T = 10K, c = 2.2Дж/кг ·K и
ρ = 19.8 · 103 кг/м3, получим оценку τd = 3мкс. В то
же время радиационный теплообмен пластин при их
тепловой изоляции от окружающей среды осуществ-
ляется через узкий вакуумный зазор. Тогда, предпо-
лагая, что пластины идентичны и имеют одинаковую
температуру, кинетика нагрева каждой описывается
уравнением

dT

dt
=
η(V, T )V 2

2bc(T )ρ
, (10)

где η(V, T ) = |Fx|/V – параметр трения. В соответ-
ствии с (10), характерное время повышения темпе-
ратуры на величину ∆T составит τr = 2bcρ

ηV 2 ∆T и,
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Рис. 2. (Цветной онлайн) Максимальное увеличение температуры (в K) движущейся пластины при квазистационар-
ном перегреве в зависимости от скорости. Слева: расчет с линейной зависимостью удельного сопротивления золота от
температуры (см. дополнительные материалы, рис. S1, кривая ρ ∼ T ); справа: с зависимостью Блоха–Грюнайзена с
ограничением остаточного сопротивления на уровне ρ(7 K) ≈ 10−11 Ом ·м. Числа на кривых показывают температуры
покоящейся пластины

соответственно, τr/τd = 2λ
bηV 2∆T . В [24, 25], исполь-

зуя различные температурные зависимости удель-
ного сопротивления золота в рамках модели Дру-
де (см. дополнительные материалы) для коэффици-
ента η(V, T ), были получены значения η = 10−3 ÷
10−7 кг/м2· с при T ∼ 10K. Отсюда следует, что
τr/τd ≫ 1 при ∆T ∼ 1K и V < 105 м/с. Это озна-
чает, что процесс радиационного теплообмена может
рассматриваться независимо от процесса тепловой
диффузии, оправдывая возможность использования
уравнения (10) и сценария синхронного нагрева пла-
стин. Возможная схема измерений кинетики нагрева
с использованием контролируемого вращения одной
из пластин, рассматривалась в [24, 25].

Если пластины различаются по величине локаль-
ной температуры и/или по другим параметрам, то
уравнение для нагрева каждой из них надо записы-
вать по отдельности. Тогда получим систему уравне-
ний (в первом приближении считаем, что параметры
h1,2, ρ1,2 не зависят от температуры)
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= −P2(V, T1, T2)

2h2c2(T2)ρ2
,

(11)

где P1 и P2 определяются формулами (7), (8). Ис-
следование всех возможных вариантов решения си-
стемы (11) выходит за рамки данной статьи ввиду
весьма сложной интегральной зависимости правых
частей от температур и других параметров. С точ-
ки зрения возможных экспериментальных измере-

ний тепловых эффектов и, тем самым, силы трения,
представляет большой интерес сценарий, при кото-
ром пластина 1 имеет постоянную температуру, под-
держиваемую тепловым резервуаром, а пластина 2
нагревается, испытывая фрикционный нагрев. При
P2(V, T1, T2) = 0 будет наблюдаться стационарный
режим,когда T1 = const, dT2/dt = 0, но T2 дости-
гает максимальных значений. Начальные значения
температур T1 и T2 можно выбрать одинаковыми. В
силу симметрии, величину максимального перегрева
такой же величины можно получить и для пласти-
ны 1, если тепловой резервуар находится в тепло-
вом контакте с подвижной пластиной. Максималь-
ная величина разности температур ∆T = T2 − T1 за-
висит от скорости V и удельных сопротивлений ма-
териалов пластин. Результаты численных расчетов
∆T (V ) с использованием приближения Друде для
диэлектрической проницаемости и разных зависимо-
стей ρ(T ) [32, 33] показаны на рис. 2, 3. В этом случае

ε(ω) = 1 − ω2
p

ω(ω+iν(T )) , где ωp – плазменная частота,

ν(T ) = ω2
pρ(T )/4π – частота релаксации электронов.

Во всех случаях расстояние между пластинами при-
нималось равным a = 10 нм, а ωp = 9.03 эВ. Как по-
казано в [25], при a = 10 ÷ 20 нм зависимость cилы
трения от расстояния a (а также P1 и P2 вследствие
(5)) близка к 1/a. Вид функций ∆T (V ) на рис. 2, 3
подтверждает выводы [23–25] о том, что движущееся
тело может нагреваться, имея более высокую темпе-
ратуру по сравнению с покоящимся (см. также до-
полнительные материалы и рис. S2). Возможна и об-
ратная ситуация с перегревом покоящегося тела.
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Рис. 3. (Цветной онлайн) То же, что на рис. 2 с исполь-
зованием зависимости удельного сопротивления золота
по модифицированной модели Блоха–Грюнайзена [33]
(см. рис. S1, кружки)

Исследование одновременного обращения в нуль
величин P1 и P2 или их суммы (т.е. возможность без-
диссипативного движения) при надлежащем выборе
параметров представляет отдельную важную задачу,
и пока не ясно, имеет ли она вообще решение.

Заключение. В рамках флуктуационно-
электромагнитной теории рассмотрены особен-
ности радиационного теплообмена и силы трения
Казимира–Лифшица при нерелятивистском от-
носительном движении толстых однородных и
изотропных пластин с заданными диэлектрически-
ми и магнитными характеристиками. Результаты
расчетов для пластин золота создают основу
для экспериментального измерения силы трения
Казимира–Лифшица по избыточному нагреву дви-
жущейся или покоящейся пластины в диапазоне
температур T < 15K и скоростей V ≈ 1÷ 103 м/c.
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