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С помощью магнитооптического эффекта Фарадея зарегистрированы петли гистерезиса в (111) эпи-
таксиальной пленке редкоземельного граната железа при комнатной температуре. Магнитное поле при-
ложено в плоскости пленки, обладающей магнитной анизотропией типа “легкая плоскость” в сочетании с
кубической анизотропией, которая обеспечивает выход намагниченности из плоскости пленки. Экспери-
ментально обнаружено подавление нормальной компоненты намагниченности в результате оптической
накачки с длиной волны 635 нм, что связано с эффектом фотоиндуцированной магнитной анизотропии.
Обнаружена зависимость эффекта от направления волнового вектора света накачки в кристалле. Об-
наруженный эффект анализируется в рамках механизма фотоиндуцированного возбуждения дырочных
поляронов.
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Введение. Одним из активно развивающихся
направлений современных исследований является
управление намагниченностью магнитных материа-
лов с помощью светового излучения. Такое управле-
ние, не связанное с тепловым действием света, ока-
зывается возможным как за счет обратных магнито-
оптических эффектов, так и за счет эффектов фо-
тоиндуцированной магнитной анизотропии (ФМА).
Эти эффекты различаются механизмами воздей-
ствия света и, как следствие, обратные магнитооп-
тические эффекты являются быстрыми, в отличие
от медленных эффектов ФМА [1]. Среди материа-
лов, демонстрирующих эффект ФМА, особое место
занимают гранаты железа.

Для усиления фарадеевского вращения плоско-
сти поляризации света в редкоземельных гранатах
железа используется замещение трехвалентных до-
декаэдрических ионов ионами Bi3+. Магнитные свой-
ства редкоземельных гранатов железа, как прави-
ло, определяются трехвалентными ионами Fe3+, ко-
торые занимают тетраэдрические и октаэдрические
позиции структуры граната. В частности, магнит-
ная анизотропия определяется одноионным вкладом
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ионов Fe3+, которые являются S-ионами со слабым
спин-орбитальным взаимодействием.

При замещении трехвалентных катионов двух-
или четырехвалентными катионами зарядовая ком-
пенсация приводит к образованию катионов Fe4+ или
Fe2+, соответственно. Катионы Fe2+ и Fe4+ демон-
стрируют сильную спин-орбитальную связь, что при-
водит к усилению магнитной анизотропии гранатов
при гетеровалентном легировании.Изменение содер-
жания ионов Fe4+ или Fe2+ в различных кристалло-
графических позициях граната под действием све-
та является основным механизмом формирования
ФМА в катион-замещенных гранатах железа.

Эффект ФМА хорошо изучен в кремний заме-
щенном гранате железа, в котором зарядовая ком-
пенсация приводит к появлению ионов Fe2+, а пе-
рераспределение этих катионов по неэквивалентным
октаэдрическим позициям под действием света при-
водит к формированию ФМА. Основная особенность
ФМА в этом случае состоит в зависимости эффекта
от ориентации плоскости поляризации линейно по-
ляризованного света [2–4].

В эпитаксиальных пленках катион-замещенного
редкоземельного граната железа эксперименталь-
но обнаружен эффект фотоиндуцированного сдви-
га частоты ферромагнитного резонанса [5]. Зави-
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симость сдвига резонансной частоты от ориента-
ции плоскости поляризации линейно поляризованно-
го света оказалась слабой. При фиксированных мощ-
ности и направлении волнового вектора оптической
накачки (перпендикулярно плоскости пленки) изме-
нение ориентации плоскости поляризации изменяло
сдвиг резонансной частоты не более чем на 10 %. Из-
вестны также фотомагнитные эффекты, возникаю-
щие под действием неполяризованного света [6].

При замещении додекаэдрических ионов немаг-
нитными двухвалентными ионами Ca2+ в гранатах
железа также возникает эффект ФМА [7, 8]. Заря-
довая компенсация в этом случае приводит к появ-
лению катионов Fe4+ в тетраэдрических позициях.
Влияние ориентации плоскости поляризации света
на эффекты ФМА в кальций замещенных гранатах
железа в известных нам работах не обсуждается.

Кроме того, в известных нам работах не обсуж-
дается зависимость эффектов ФМА от направления
волнового вектора света накачки. В настоящей рабо-
те мы сообщаем о результатах исследования магни-
тооптических петель гистерезиса, зарегистрирован-
ных для нормальной компоненты намагниченности
катион-замещенной пленки редкоземельного граната
железа при направлении магнитного поля в плоско-
сти пленки (111). При комнатной температуре экспе-
риментально обнаружено влияние направления вол-
нового вектора света накачки на величину выхо-
да намагниченности из плоскости пленки. Так как
величина нормальной компоненты намагниченности
определяется вкладом магнитной анизотропии, то
обнаруженное явление мы рассматриваем как зави-
симость эффекта ФМА от направления волнового
вектора света накачки.

Эксперимент. Для проведения экспери-
ментов использовалась пленка граната железа
(Bi, Lu, Pr)3(Fe, Ga)5O12. Пленка синтезирована
методом жидкофазной эпитаксии на одной стороне
подложки из гадолиний галлиевого граната с исполь-
зованием свинцового растворителя и платинового
тигля. Подложка толщиной 500 мкм ориентирована
в кристаллической плоскости (111). Рентгеновский
флуоресцентный анализ показал наличие в соста-
ве пленки примесей свинца, платины и кальция,
которые образовались в процессе эпитаксиального
синтеза. Размер образца порядка 5 × 5мм при
толщине магнитной пленки 11.7 мкм.

Из экспериментов по ферромагнитному резонан-
су на частоте 9.66 ГГц при комнатной температуре
получено, что эффективное поле одноосной анизо-
тропии Hu ≈ 118Э, что соответствует анизотропии
типа “легкая плоскость”. Эффективное поле кубиче-

ской анизотропии HK1 ≈ −20Э, что соответству-
ет направлению осей легкого намагничивания вдоль
кристаллографических направлений <111>. В от-
сутствие внешнего магнитного поля в линейно по-
ляризованном свете наблюдается полосовая домен-
ная структура, что свидетельствует о выходе на-
магниченности в доменах из плоскости пленки. При
направлении намагничивающего поля в плоскости
пленки доменная структура исчезает, а кубическая
анизотропия приводит к выходу намагниченности из
плоскости образца так, что величина проекции на-
магниченности на направление нормали к плоскости
пленки зависит от направления поля в плоскости.

Регистрация нормальной компоненты намагни-
ченности осуществлялась с помощью магнитоопти-
ческого эффекта Фарадея при комнатной темпера-
туре. За основу взят прибор, предложенный в работе
[9]. Намагничивающее поле H, создаваемое с помо-
щью скрещенных катушек Гельмгольца, направлено
так, что совпадает с направлением проекции направ-
ления [111̄] на плоскость пленки (рис. 1).

Рис. 1. (Цветной онлайн) Тригональные оси, совпадаю-
щие с кристаллографическими направлениями <111>

в пленке (111). Полярный θL и азимутальный ϕL уг-
лы определяют направление волнового вектора оптиче-
ской накачки k. Магнитное поле H лежит в плоскости
пленки коллинеарно кристаллографическому направ-
лению [112̄], совпадающему с проекцией тригональной
оси [111̄] на плоскость пленки. 1 – луч зондирующего
лазера 2 – призма Волластона; 3 – балансный фотоде-
тектор

Луч зондирующего лазера (мощность 0.5 мВт,
длина волны 680 нм) направлен по нормали к плос-
кости пленки. Размер светового пятна на поверхно-
сти образца 5 мм. Фарадеевское вращение в образце
приводит к повороту плоскости поляризации излуче-
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ния зондирующего лазера на угол α. Прошедший че-
рез образец зондирующий луч поступает на призму
Волластона. Сформированные призмой Волластона
два луча с ортогональной поляризацией подаются
на балансный фотодетектор. Схема регистрации на-
строена таким образом, что регистрируемый на вы-
ходе фотодетектора сигнал V , с учетом фарадеевско-
го вращения в образце, прямо пропорционален нор-
мальной компоненте намагниченности образца [9].

Для изучения фотоиндуцированных эффектов
использовался полупроводниковый лазер накачки с
длиной волны 635 нм и регулируемой мощностью до
30 мВт. Полярный θL и азимутальный ϕL углы опре-
деляют направление волнового вектора излучения
накачки (рис. 1). Для предотвращения засветки ре-
гистрирующего фотодетектора излучением накачки,
прошедшим через образец, эксперименты проводи-
лись при углах 65◦ < θL < 90◦. При таких значе-
ниях угла θL в отсутствие зондирующего излучения
сигнал на выходе фотодетектора равен нулю.

В отсутствие оптической накачки петля магнито-
оптического гистерезиса представлена зависимостью
1 на рис. 2. Максимум нормальной компоненты на-

Рис. 2. (Цветной онлайн) Зависимость угла поворота
плоскости поляризации зондирующего излучения α от
магнитного поля H в отсутствие оптической накачки
(1) и при оптической накачке (PL = 30 мВт, θL ≈ 700)
при ϕL = 00 (2), ϕL = 900 (3) и ϕL = 1800 (4). α0 –
максимальный угол поворота плоскости поляризации
в отсутствие оптической накачки

магниченности достигается в слабых, порядка 10 Э,
магнитных полях, а дальнейшее увеличение поля до
100 Э приводит к медленному уменьшению намаг-
ниченности.Оптическая накачка мощностью 30 мВт
при θL ≈ 70◦ и ϕL = 0◦ приводит к уменьшению
максимальной намагниченности при том, что фор-

ма петли магнитооптического гистерезиса заметно не
изменяется. Максимальное значение намагниченно-
сти линейно убывает при увеличении мощности на-
качки от 10 до 30 мВт (рис. 3).

Рис. 3. (Цветной онлайн) Зависимость максимального
угла поворота плоскости поляризации зондирующего
излучения α от мощности оптической накачки PL при
θL ≈ 700 и ϕL = 00. α0 – максимальный угол пово-
рота плоскости поляризации в отсутствие оптической
накачки. Пунктирная линия – результат линейной ап-
проксимации

Экспериментально обнаружено, что максималь-
ный выход намагниченности из плоскости образца
при перемагничивании вдоль направления [112̄] за-
висит от направления волнового вектора излуче-
ния накачки (зависимости 2, 3 и 4 на рис. 2). При
этом полярный угол удерживался постоянным θL ≈
70◦, чтобы избежать изменения засветки образца, а
варьировался только азимутальный угол ϕL.

Увеличение азимутального угла ϕL от 0◦ до 180◦

приводит к снижению амплитуды регистрируемого
сигнала (рис. 4). Дальнейшее увеличение азимуталь-
ного угла ведет к восстановлению намагниченности
до начального значения.

В результате специально проведенных экспери-
ментов установлено, что фотоиндуцированное подав-
ление выхода намагниченности из плоскости пленки
слабо зависит от ориентации плоскости поляризации
излучения накачки. При фиксированном направле-
нии волнового вектора света накачки и полном по-
вороте плоскости поляризации максимальный выход
намагниченности из плоскости пленки изменяется не
более, чем на 10 %, что хорошо согласуется с резуль-
татами работы [5].

Установление фотоиндуцированной намагничен-
ности происходит в течение десятков секунд после
включения света накачки. После выключения накач-
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ки намагниченность восстанавливается до первона-
чального значения так же в течение десятков секунд.

Модификация петель гистерезиса вследствие из-
менения ϕL, подобная приведенной выше, имеет ме-
сто и при других фиксированных значениях поляр-
ного угла в интервале допустимых значений 65◦ <

< θL < 90◦. Если, наоборот, фиксирован азимуталь-
ный угол ϕL, то изменение полярного угла также
приводит к изменению размаха петли по вертикали.
Однако, величина изменения в этом случае заметно
меньше, что, по-видимому, связано с меньшим диа-
пазоном изменения направления волнового вектора
накачки. Экспериментальные результаты воспроиз-
водятся при направлении внешнего магнитного поля
вдоль проекции на плоскость любой из неэквивалент-
ных тригональных осей.

Рис. 4. (Цветной онлайн) Зависимость максимально-
го угла поворота плоскости поляризации зондирующе-
го излучения α от азимутального угла ϕL при PL =

= 30 мВт и θL ≈ 700. α0 – максимальный угол поворота
плоскости поляризации в отсутствие оптической накач-
ки. Пунктирная линия построена для удобства воспри-
ятия

Обсуждение результатов. Величина выхода
намагниченности из плоскости образца определяется
конкуренцией поля размагничивания, намагничива-
ющего поля и эффективных полей магнитной ани-
зотропии [10]. Эффективное поле одноосной анизо-
тропии, включающее поле размагничивания и поле
одноосной анизотропии, а также намагничивающее
поле стремятся удержать намагниченность в плоско-
сти образца. Отрицательное по величине эффектив-
ное поле кубической анизотропии стремиться выве-
сти намагниченность из плоскости пленки, если на-
правление намагничивающего поля совпадает с про-
екцией направления <111> на плоскость пленки.

Так как размер светового пятна зондирующе-
го лазера существенно больше периода полосовой

доменной структуры в отсутствие внешнего по-
ля, интегральное фарадеевское вращение плоско-
сти поляризации света в размагниченном состоя-
нии равно нулю. При увеличении внешнего магнит-
ного поля растет вклад доменов, в которых про-
екция намагниченности на плоскость пленки сов-
падает с направлением поля, что приводит к ро-
сту угла α. Дальнейшее увеличение магнитного
поля приводит к исчезновению доменной струк-
туры и последующему подавлению выхода намаг-
ниченности из плоскости однородно намагничен-
ной пленки. В полях, соответствующих области
насыщения петель гистерезиса (рис. 2) доменная
структура экспериментально не наблюдается. Мак-
симум фарадеевского вращения α наблюдается в
диапазоне полей, соответствующих переходу образ-
ца из полидоменного в однородно намагниченное
состояние.

Учитывая медленное изменение размаха петли
магнитооптического гистерезиса в результате дей-
ствия оптической накачки, наблюдаемые эффекты
мы относим к ФМА. В нашем случае эффекты ФМА
состоят в фотоиндуцированном подавлении вкла-
да в анизотропию, ответственного за формирование
нормальной компоненты намагниченности. Заметим,
что фотоиндуцированная модификация петли гисте-
резиса (рис. 1) состоит не только в подавлении раз-
маха петли по вертикали, но и в увеличении разницы
между максимальным значением нормальной намаг-
ниченности и ее величиной при дальнейшем увеличе-
нии поля. Чем сильнее фотоиндуцированное подав-
ление анизотропного вклада, тем эффективнее плос-
костное магнитное поле уменьшает выход намагни-
ченности из плоскости пленки.

Явление ФМА в гранатах наиболее хорошо изу-
чено для случая ионов Fe2+ [2–4]. Например в
Y3Fe5O12:Si ионы Si4+ замещают тетраэдрические
ионы Fe3+, а зарядовая компенсация приводит к
появлению Fe2+ в октаэдрических позициях. Ок-
таэдрические позиции обладают тригональной сим-
метрией. Катионы Fe2+, обладающие сильной спин-
орбитальной связью, приводят к формированию од-
ноосной магнитной анизотропии так, что выделен-
ная ось совпадает с направлением локальной триго-
нальной оси. В структуре граната существует четы-
ре неэквивалентные октаэдрические позиции, разли-
чающиеся направлением тригональной оси. В отсут-
ствие света каждая из неэквивалентных октаэдриче-
ских позиций содержит одинаковое число катионов
Fe2+. Совокупная одноосная анизотропия октаэдри-
ческих позиций приводит к кубической симметрии
граната.
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Действие света на ион Fe2+ состоит в отсоедине-
нии избыточного,по отношению к Fe3+, электрона и
переходу этого электрона в возбужденное состояние,
детальное описание которого авторам работы [3] не
представляется необходимым. Такой процесс эквива-
лентен фотоиндуцированному переходу Fe2+–Fe3+.
Эффективное сечение взаимодействия света с элек-
троном зависит от угла между направлением векто-
ра электрического поля световой волны и локальной
тригональной осью [3]. Это обусловлено тем, что вол-
новая функция возбуждаемого электрона не явля-
ется сферически симметричной.Время жизни элек-
трона в возбужденном состоянии пренебрежимо ма-
ло, а обратные Fe3+–Fe2+ переходы происходят так,
что катион Fe2+ может равновероятно образоваться
в любой неэквивалентной октаэдрической позиции. В
результате заселенность разных октаэдрических по-
зиций ионами Fe2+ оказывается зависящей от ориен-
тации плоскости поляризации линейно поляризован-
ного света в кристалле. Заселенность одних октаэд-
рических позиций ионами Fe2+ оказывается больше,
чем в отсутствие света, а других – меньше. Различ-
ные тригональные оси становятся неэквивалентными
осями легкого намагничивания, в чем, собственно, и
состоит ФМА.

Перераспределение ионов с сильной спин-
орбитальной связью по неэквивалентным позициям,
при сохранении общего числа таких ионов, должно
приводить к уменьшению выхода намагниченности
из плоскости при одних направлениях накачки и
увеличению при других. Такое поведение плохо
согласуется с результатами наших экспериментов,
в которых наблюдается только уменьшение выхода
намагниченности из плоскости при различных на-
правлениях волнового вектора оптической накачки.

Несколько иной механизм формирования ФМА
реализуется в гранатах железа с избытком двухва-
лентного кальция. Зарядовая компенсация приводит
к образованию ионов Fe4+ в тетраэдрических пози-
циях. В силу сильного спин-орбитального взаимодей-
ствия ионы Fe4+ приводят к формированию одно-
осной магнитной анизотропии. Для различных тет-
раэдрических позиций выделенные оси направлены
вдоль различных тетрагональных осей (направлений
[100]). Сумма этих вкладов приводит к кубической
анизотропии кристалла [7].

При комнатной температуре действие света при-
водит к формированию дырочного полярона, что
эквивалентно фотоиндуцированному переходу Fe4+–
Fe3+. С учетом конечного времени жизни полярона,
действие света состоит в эффективном уменьшении
концентрации ионов Fe4+ и соответствующему уве-

личению концентрации ионов Fe3+. Вследствие из-
менения концентрации ионов с сильной орбитальной
связью формируется ФМА [7, 8].

Рассмотренный механизм, связанный с ионами
Fe4+, может быть применен к анализу наших экс-
периментальных результатов, полученных в образце
граната железа с примесями кальция. Предположим,
что динамика поляронов является анизотропной, т.е.
будем полагать, что эффективность возбуждения по-
лярона зависит от направления его квазиимульса в
кристалле. Фотоиндуцированный полярон получает
импульс от фотона световой волны. Так как импульс
фотона ~k зависит от волнового вектора k (~ – по-
стоянная Планка), то и вероятность фотоиндуциро-
ванного возбуждения полярона должна зависеть от
направления волнового вектора световой волны k. В
результате заселенность различных тетраэдрических
позиций ионами Fe4+ оказывается разной и суммар-
ный вклад в анизотропию при фиксированном k при-
водит к неэквивалентности осей легкого намагничи-
вания,совпадающих с тригональными осями. Таким
образом, механизм, связанный с фотоиндуцирован-
ными переходами Fe4+–Fe3+, представляется предпо-
чтительным для объяснения наших экспериментов.

При этом для несферических волновых функ-
ций возбуждаемых электронов эффективное сече-
ние взаимодействия должно зависеть от направления
вектора электрического поля световой волны. Сла-
бая зависимость наблюдаемых эффектов от ориента-
ции плоскости поляризации линейно поляризованно-
го света свидетельствует о незначительном отклоне-
нии формы волновых функций от сферической для
возбуждаемых светом электронов.

Заключение. С помощью магнитооптического
эффекта Фарадея зарегистрированы петли магнит-
ного гистерезиса в катион-замещенной (111) плен-
ке редкоземельного граната железа при комнатной
температуре. Несмотря на одноосную анизотропию
типа “легкая плоскость” и направление внешнего
магнитного поля в плоскости пленки, кубическая
магнитная анизотропия приводит к выходу намаг-
ниченности из плоскости пленки. Эксперименталь-
но обнаружено подавление выхода намагниченности
из плоскости пленки под действием оптической на-
качки. Степень подавления зависит от направления
волнового вектора световой волны накачки относи-
тельно осей кристалла. Показано, что наблюдаемые
эффекты обусловлены фотоиндуцированной магнит-
ной анизотропией. Предложен механизм, состоящий
в фотоиндуцированном возбуждении дырочных по-
ляронов, что приводит к эффективному уменьше-
нию концентрации ионов Fe4+, обладающих сильной
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спин-орбитальной связью и соответствующим увели-
чением концентрации ионов Fe3+. Предполагается,
что эффективность фотоиндуцированного возбуж-
дения поляронов зависит от направления волново-
го вектора световой волны относительно локальной
оси симметрии позиции, занятой ионом Fe4+, что, в
конечном итоге, приводит к неэквивалентности осей
легкого намагничивания, совпадающих с различны-
ми кристаллографическими направлениями <111>.
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