
Письма в ЖЭТФ, том 121, вып. 2, с. 153 – 159 © 2025 г. 25 января

Медленные осцилляции поперечного магнетосопротивления

в HoTe3
1)

С. В. Зайцев-Зотовa,b,c2), П. Д. Григорьевd, Д. Воропаевa,c, А. А. Морочоe, И. А. Конa,b, Е. Пашуf 3),

А. Хадж-Азземf 3), П. Монсоf 3)

aИнститут радиотехники и электроники РАН, 125009 Москва, Россия

bНациональный исследовательский университет “Высшая школа экономики”, 101000 Москва, Россия

cМосковский физико-техничесиий институт, 141700 Долгопрудный, Россия

dИнститут теоретической физики им. Л.Д.Ландау, 142432 Черноголовка, Россия

eМосковский институт стали и сплавов, 119049 Москва, Россия
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В HoTe3 обнаружены медленные осцилляции магнетосопротивления, периодические по обратному
магнитному полю с частотой 3.4Тл. Температурная зависимость амплитуды осцилляций близка к экс-
поненциальной даже при низкой температуре, что может являться следствием наличия мягких мод в
системе и позволяет оценить скорость рассеяния электронов на них. В области магнитных полей больше
1Тл осцилляции удается описать как интерференционные, связанные с наличием расщепления зонной
структуры из-за бислойной структуры HoTe3. Полученные данные позволили вычислить отношение
интегралов перескока между слоями (t⊥) и внутри бислоя (tz), t⊥/tz = 15.6, и оценить их величины
t⊥ ∼ 2 мЭв и tz ∼ 0.26 мЭв.
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Введение. Исследование магнитных квантовых
осцилляций (МКО) является одним из старейших и
широко используемых методов исследования элек-
тронной структуры металлов [1]. Частота осцилля-
ций по обратному магнитному полю пропорциональ-
на площади поперечного сечения поверхности Фер-
ми (ПФ) и в обычных металлах составляет тысячи
Тесла (Т). По мере расширения круга изучаемых ве-
ществ оказалось, что в некоторых из них возникают
осцилляции с чрезвычайно низкими частотами по-
рядка несколько десятков и даже единиц Тл. Попыт-
ки связать эти осцилляции с наличием малых карма-
нов ПФ оказались неудачными в силу аномально ма-
лых размеров карманов и того обстоятельства, что
температурная зависимость медленных осцилляций
гораздо более слабая по сравнению с осцилляциями
Шубникова–де Гааза.

В настоящее время существует несколько объяс-
нений происхождения медленных осцилляций. Все
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они связаны с интерференцией двух близких частот
быстрых осцилляций и определяются разностью их
частот. Медленные осцилляции характерны для ква-
зидвумерных слоистых систем и возникают из-за ма-
лого межслоевого перескока электронов, приводяще-
го к возникновение двух близких по площади экстре-
мальных сечений цилиндрической ПФ благодаря ее
гофрировке [2–4].

Возникновение медленных или разностных ос-
цилляций является общим в металлах, в зонной
структуре которых имеется расщепление, приводя-
щее к появлениям участков ПФ с близкими площа-
дями поперечного сечения в направлении, перпен-
дикулярном к направлению магнитного поля. По-
хожие осцилляции изучались ранее в гетерострук-
турах и назывались межподзонными [5, 6]. В мно-
гозонных проводниках также возникают разност-
ные осцилляции [7]. Однако, из-за отличия цикло-
тронных частот разных зон они часто приобрета-
ют температурное затухание [7], похожее на пред-
сказание формулы Лифшица–Косевича [1], и этим
отличаются от медленных осцилляций в слоистых
системах.
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Расщепление электронного спектра возникает
также в бислойных квазидвумерных металлах,
где на одну элементарную ячейку приходится два
проводящих атомных слоя. Известным примером
такого материала являются высокотемператур-
ные сверхпроводники на основе купратов, где
подобные медленные осцилляции, действительно,
наблюдались [8–14]. Их происхождение до сих пор
обсуждается, поскольку их частота слишком мала
чтобы возникать напрямую из ПФ, рассчитанной
или наблюдаемой в ARPES экспериментах. Про-
исхождение этих малых частот связывают либо с
перестройкой ПФ из-за волн зарядовой плотности
(ВЗП) [13, 14], либо с бислойным расщеплением
электронного спектра [15, 16]. Последняя версия
подтверждается наблюдаемыми набором и угловой
зависимостью частот этих осцилляций [12] и их
слабой зависимостью от степени легирования [13].

В одночастичном приближении, когда термоди-
намический потенциал является линейным функци-
оналом от электронной плотности состояний, мед-
ленные осцилляции термодинамических величин, та-
ких как намагниченность, сильно подавлены по срав-
нению с медленными осцилляциями транспортных
величин, таких как электронная проводимость [2,
3]. Однако учет электрон- электронного взаимодей-
ствия приводит к возникновению сильных медлен-
ных осцилляций также и термодинамических вели-
чин [17]. Это, вероятно, объясняет наблюдение мед-
ленных квантовых осцилляций в купратах не только
в транспортных [8, 10–14], но и термодинамических
величинах [9, 13, 14].

Похожая на купраты ситуация возникает в три-
теллуридах редкоземельных металлов RTe3, где так-
же имеются бислойная кристаллическая структура
и ВЗП. В этих соединениях также наблюдаются низ-
кочастотные МКО [18], и они также не могут быть
объяснены в рамках исходной ПФ. Ниже мы пока-
жем, что в трителлуридах работают оба механизма,
обсуждаемые для купратов: и перестройка ПФ из-за
ВЗП, и бислойное расщепление электронного спек-
тра. Они дают разные частоты МКО, причем самая
малая частота может не превышать 10 Тл.

HoTe3 является представителем семейства трите-
луридов металлов группы лантанидов (R =La, Ce,
Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm) [19]. Материа-
лы этого семейства имеют ромбическую элементар-
ную ячейку (группа симметрии Cmcm), которая со-
стоит из двойных плоскостей Te, разделенных гоф-
рированными плоскостями RTe; ось b перпендику-
лярна плоскостям Te, причем элементарная ячейка
HoTe3 состоит из двух четырехслойников Te-HoTe-

HoTe-Te, которые как бы формируют бислой следу-
ющего уровня. Эти материалы имеют богатую фа-
зовую диаграмму, связанную с наличием двух пай-
ерсловских переходов, а также магнитных переходов
при низких температурах [20].

В HoTe3 наблюдается переход в состояние с ВЗП
с несоизмеримым с решеткой волновым вектором
QCDW1 = (0, 0, 0.296) при температуре TP1 = 283K,
а при температуре TP2 = 110K происходит второй
переход с образованием ВЗП с волновым вектором
QCDW2 = (0.32, 0, 0), перпендикулярным QCDW1.
Тем не менее при низких температурах в HoTe3 со-
храняется металлическая проводимость, свидетель-
ствующая о сохранении карманов на ПФ после двух
переходов с образованием ВЗП.

Магнетосопротивление HoTe3 исследовалось в ря-
де работ [21, 22]. Было установлено, что при пони-
жении температуры от комнатной до 40 К возникает
постепенный переход от квадратичного к линейному
по магнитному полю магнетосопротивлению, связы-
ваемый с зависимостью времени рассеяния электро-
нов из-за “горячих точек” ПФ (hot spots) τhs от маг-
нитного поля, τhs ∝ 1/H [22]. Были также изучены
осцилляции магнетосопротивления в магнитных по-
лях до 65 Тл [21]. Обнаружено, что в этом соединении
спектры осцилляций магнетосопротивления зависят
от диапазона исследований. Так, в магнитных полях
выше 40 Тл возникает магнитный пробой, сопровож-
дающийся возникновением высокочастотных компо-
нент осцилляций с частотами до 1700 Тл, в то вре-
мя как в магнитных полях до 22 Тл частоты не пре-
вышают 100 Тл, причем спектры, наблюдающиеся в
магнитных полях 3–16 и 6–22 Тл существенно отли-
чаются. Характерные частоты осцилляций, наблю-
давшихся в магнитных полях 3–22 Тл, связывались с
наличием небольших карманов на ПФ в HoTe3.

В настоящей работе сообщается о результатах
изучения наиболее низкочастотной компоненты ос-
цилляций в HoTe3. Нам удалось проследить развитие
низкочастотных осцилляций с частой 3.4 Тл, начиная
от магнитных полей 0.5 Тл в диапазоне температур
от 3 до 60 К. Показано, что зависимость амплитуды
осцилляций от обратного магнитного поля описыва-
ется предсказаниями работы [16], рассматривающей
влияние расщепления зонной структуры на кванто-
вые осцилляции магнетосопротивления на примере
сверхпроводящих купратов.

Методы. Исследовались кристаллические образ-
цы HoTe3, выращенные методом газового транспор-
та. Исследовавшиеся образцы представляли собой
тонкие прямоугольные пластины с характерными
размерами 1–2 мм в плоскости пластины и толщиной
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около 30 мкм. Высокое качество исследовавшихся об-
разцов подтверждается большим значением отноше-
ния R(300 K)/R(4.2 K) ≈ 40. Контакты к образцам
получались комбинированным методом с использо-
ванием индия и серебряной пасты и располагались
на углах образца. Все измерения проводились на пе-
ременном токе при ориентации магнитного поля пер-
пендикулярно плоскости протекания тока a-c.

Результаты. Температурные зависимости сопро-
тивления образца HoTe3 для двух, приблизитель-
но взаимно ортогональных направлений, показаны
на вставке к рис. 1. Переход с образованием вы-
сокотемпературной ВЗП при TCDW1 = 285 K бо-
лее заметен вдоль одного из направлений, которое
в дальнейшем будет называться направлением c,
так как именно для этого направления влияние пе-
рехода на компоненту тензора проводимости мак-
симально. Соответственно, другое направление бу-
дет считаться направлением a. Особенность темпе-
ратурной зависимости проводимости, связанная с
переходом при TCDW2 = 110K, при измерениях
проводимости в плоскости ac практически не про-
является [23].

На рисунке 1 представлены зависимости магне-
тосопротивления вдоль оси c от магнитного поля
при температурах 3–80 К. Все зависимости близки к
линейным во всем диапазоне температур. Магнето-
сопротивление вдоль оси a как функция магнитно-
го поля имеет слабо выраженный сублинейный вид
(выгиб вверх примерно на 10 % в поле 4 Тл). При
самых низких температурах на кривых становится
видно слабое осциллирующее поведение. Тем не ме-
нее, осцилляции магнетосопротивления малы и без
дополнительной обработки результатов практически
не видны на исходных кривых.

Выделение осцилляций проходило в 2 этапа. На
первом этапе из исходных зависимостей R(B) вычи-
тался полином второго порядка, что делало осцил-
ляции более заметными. На рисунке 2 показаны ти-
пичные результаты вычитания для двух изучавших-
ся образцов. Видно, что осцилляции можно разде-
лить как минимум на две группы – наблюдающиеся
в малом магнитном поле ниже примерно 4 Тл и на-
блюдающиеся в бóльших полях. Осцилляции, наблю-
дающиеся в малых полях, представляют собой инте-
ресующие нас низкочастотные осцилляции, а наблю-
дающиеся в полях, начинающихся примерно 4 Тл, со-
ответствуют частотам до 60 Тл (см. ниже), типичным
для HoTe3 и изучавшимся ранее [21]. Видно также,
что низкочастотные осцилляции заметно больше на
образце 2. Результаты, представленные ниже, полу-
чены на этом образце.

Рис. 1. (Цветной онлайн) Температурная зависимость
магнетосопротивления δR/R(0), где δR = R(0)−R(B),
вдоль оси c. На вставке показаны температурные за-
висимости сопротивления образца преимущественно
вдоль направлений a и c

Рис. 2. (Цветной онлайн) Магнетосопротивление после
удаления фона полиномом второго порядка. Темпера-
тура измерений 3.0К

На втором этапе данные перестраивались в осях
δR/R(B) от 1/B и из них вычиталась фоновая кри-
вая, полученная с помощью скользящего сглажива-
ния полиномом второго порядка в окне шириной 0.6
1/Тл. Такая методика вызывает небольшие искаже-
ния амплитуды осцилляций вблизи концов исследуе-
мого диапазона, но зато позволяет практически пол-
ностью удалить медленные колебания фона, хорошо
видимые на рис. 1, оставив осцилляции, изучаемые в
настоящей работе. Результат такого вычитания по-
казан на рис. 3. Форма осцилляций и их спектры при
измерениях в направлениях a и c практически не от-
личались.
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Рис. 3. (Цветной онлайн) Осциллирующая часть маг-
нетосопротивления

На рисунке 4 показаны спектры осцилляций, из-
меренных при различных температурах. Хорошо
видно, что осцилляции с частотой 3.4 Тл преоб-
ладают.

Рис. 4. (Цветной онлайн) Спектры осцилляций, полу-
ченные из данных, представленных на рис. 3, с помо-
щью преобразования Фурье

На рисунке 5 показана температурная зависи-
мость амплитуды осцилляций, полученная на осно-
ве данных, представленных на рис. 4. Разные значки
соответствуют результатам, полученным при проти-
воположных знаках скорости развертки магнитного
поля. Виден гистерезис по магнитному полю – дан-
ные, измеренные при одном знаке развертки (круж-
ки) практически всегда лежат выше данных, полу-
ченных при противоположном (кресты). Кроме того,
налицо и гистерезис по температуре – данные в диа-
пазоне 3–30 К снимались при последовательном уве-

Рис. 5. (Цветной онлайн) Температурная зависимость
амплитуды низкочастотных осцилляций, представлен-
ных на рис. 4. Разными значками показаны амплитуды,
полученные из результатов измерения при противопо-
ложных знаках скорости развертки магнитного поля.
На вставке показан участок зависимости Rc(T ) в обла-
сти низких температур. Линия – аппроксимация дан-
ных полиномом второй степени

личении температуры и лежат в основном выше жел-
той прямой, а в диапазоне 40–70 K – при уменьшении
и лежат в основном ниже. При этом петля гистере-
зиса схлопывается на концах диапазона. В пределах
погрешности, определяемой разбросом точек и гисте-
резисом, зависимость близка к экспоненциальной.

Обсуждение результатов. Как уже упомина-
лось во введении, ранее линейное магнетосопротив-
ление наблюдалась в таких материалах с ВЗП, как
квазиодномерный NbSe3 [24], квазидвумерные ди-
халькогениды переходных металлов, а также в TbTe3
и HoTe3 при более высоких температурах [22] и свя-
зывалось с зависимостью времени рассеяния элек-
тронов из-за “горячих точек” ПФ (hot spots) τhs от
магнитного поля, τhs ∝ 1/H [22]. Полученные в на-
стоящей работе результаты свидетельствуют о том,
что в HoTe3 близкая к линейной зависимость сохра-
няется и ниже 40 K. Обнаруженное 10 % отклонение
от линейной зависимости в сильном поле для направ-
ления a (сублинейное магнетосопротивление) указы-
вают на анизотропию поверхности Ферми в состо-
янии с ВЗП и на конкуренцию нескольких механиз-
мов рассеяния электронов, включая “горячие точки”,
кристаллические дефекты, и т.д.

Частота обнаруженных осцилляций 3.4 Тл слиш-
ком низка для того, чтобы ее можно было припи-
сать карманам ПФ, так как площадь такого кармана
должна была бы составлять 1.5 ·10−4 от площади зо-

Письма в ЖЭТФ том 121 вып. 1 – 2 2025



Медленные осцилляции поперечного магнетосопротивления в HoTe3 157

ны Бриллюэна (см. дополнительные материалы ма-
териалы).

Наличие бислоев в HoTe3 неизбежно приводит
к расщеплению энергетической структуры, что под-
тверждается результатами первопринципных расче-
тов [25, 26]. Именно наличие такого расщепления по
нашему мнению и приводит к появлению низкоча-
стотных осцилляций.

Закон дисперсии электронов вдоль межслоевого
направления z для бислойных металлов приближен-
но описывается формулой [27]

ǫ±
(

kz ,k‖
)

= ǫ‖
(

k‖
)

±
√

t2z + t2⊥ + 2tzt⊥ cos [kzd], (1)

где t⊥ и tz – это интегралы электронного перескока
между слоями внутри бислоя и между ближайши-
ми бислоями соответственно, d – постоянная решет-
ки вдоль z, равная расстоянию между двумя одина-
ковыми слоями соседних бислоев. Часто tz ≪ t⊥, и
такой закон дисперсии упрощается:

ǫ±
(

kz ,k‖
)

≈ ǫ‖
(

k‖
)

± t⊥
(

k‖
)

± tz
(

k‖
)

cos [kzd] . (2)

Ожидаемые в случае небольшого расщепления
ПФ осцилляции описываются выражением [16]

σ2 (µ) ∝ J2
0

(

2πtz
~ωc

)

cos

(

4πt⊥
~ωc

)

R2
D, (3)

где J0(x) – функция Бесселя, а ωc = eB/m∗c~ – цик-
лотронная частота, m∗ – эффективная масса носите-
лей, e – элементарный заряд.

Согласно теории [2, 3, 16], в ур. (3) нет явного тем-
пературного затухания медленных осцилляций, ко-
торое для обычных квантовых осцилляций выраже-
но множителем

RT = RT (T,B) =
λ

sinh(λ)
, λ ≡ 2πkBT

~ωc
. (4)

Тем не менее, при достаточно высоких температу-
рах амплитуда медленных осцилляций падает (см.
рис. 5). Мы считаем, что это температурное зату-
хание возникает из-за температурной зависимости
фактора Дингла RD = exp(−π/ωcτ), куда входит
время τ рассеяния электронов на фононах, электро-
нах, и других возможных возбуждениях. Если эти
возбуждения достаточно мягкие, с энергией . kBT ,
то их число растет линейно с температурой и да-
ет линейную температурную зависимость скорости
рассеяния 1/τ . Наличие таких возбуждений подтвер-
ждается близкой к линейной зависимостью R(T ) в
области остаточного сопротивления (см. вставку на

рис. 5). Это приводит также к близкой к экспоненци-
альной температурной зависимости амплитуды мед-
ленных осцилляций, изображенной оранжевой пря-
мой на рис. 5, причем τ ∼ 10−11 с при T = 3K. Гисте-
резис в температурной зависимости амплитуды МКО
связан температурным гистерезисом эффекта Хол-
ла, известным для HoTe3 [28]. Гистерезис этой за-
висимости от магнитного поля может иметь ту же
природу.

Известно, что в низшем порядке электрон-
фононного взаимодействия и для экспоненциально
слабых МКО оно оставляет фактор Дингла RD и
эффективную массу m∗ неизменными в затухании
МКО, заданным уравнением (4) [29, 30]. Это проис-
ходит из-за специального сокращения двух членов
в собственной энергии электрона при T ≫ ~ωc,
которая входит как в RD, так и в RT . Позже это
сокращение было подтверждено для двумерных
электронных систем и для e−e взаимодействия
[31–33] и названо первым правилом частоты Ма-
цубары [33]. Вышеуказанное сокращение выведено
для зависимости амплитуды МКО от T [29–33]
которая содержит произведение RT и RD. Само τ

или фактор Дингла RD в отдельности не имеют
этого сокращения и зависят от температуры.

Мягкие моды в RTe3, приводящие к температур-
ному затуханию медленных осцилляций даже при
T < 30 K, могут возникнуть из-за ВЗП с неидеаль-
ным нестингом, когда даже при низкой температу-
ре имеются бесщелевые электронные состояния на
уровне Ферми. Подобные флуктуации ВЗП приво-
дят к электронному рассеянию в “горячих точках”
ПФ на волновой вектор ВЗП и обсуждались в свя-
зи с линейной зависимостью магнетосопротивления
в RTe3 [22, 34]. Мягкие моды в RTe3 могут также по-
явиться из-за конкуренции ВЗП и пересечения зон на
уровне Ферми, приводящей к гистерезису коэффи-
циента Холла [28]. Более резкое падение амплитуды
медленных осцилляций в интервале T = 30−40K мо-
жет быть связано с включением обычных фононных
мод, и соответственно более быстрой температурной
зависимостью скорости электрон-фононного рассея-
ния τ−1 ∼ T 3 при T много меньшей дебаевской тем-
пературы [1].

На рисунке 6 показана аппроксимация результа-
тов измерений уравнением (3). При этом теоретиче-
ские данные были подвергнуты той же процедуре об-
работки, описанной выше, что и экспериментальные
данные. Видно очень хорошее согласие эксперимен-
тальных данных и предсказаний теории.

Используя уравнение (3), из полученных резуль-
татов можно вычислить отношение интегралов пере-
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Рис. 6. (Цветной онлайн) Сопоставление экспери-
ментальных данных с предсказаниями работы [16].
T = 3.0 K

скока, t⊥/tz = 15.5, и оценить их величины из соот-
ношения t⊥ = me

m∗µBF , где F = 3.4Tл – частота мед-
ленных осцилляций. Для оценки самих величин ин-
тегралов перескока нужно знать эффективную мас-
су носителей тока. Для соединений семейства RTe3
с двумя ВЗП, к которым относится и HoTe3, работы
[21, 35] дают значение эффективной массы носите-
лей m∗/me = 0.033−0.18. Взяв в качестве типичного
значение m∗/me = 0.1, получаем оценки интегралов
перескока t⊥ ∼ 2 мЭв и tz ∼ 0.26 мЭв. Столь ма-
лые значения интегралов перескока, вероятно, соот-
ветствуют не наличию бислоев HoTe-HoTe, а гораз-
до более тонкому расщеплению зонной структуры,
возникающему благодаря особенностям кристалли-
ческой структуры HoTe3 – наличием в элементарной
ячейке двух четырехслойников Te-HoTe-HoTe-Te.

Заключение. В настоящей работе мы продемон-
стрировали существование медленных осцилляций
проводимости в магнитном поле в HoTe3, подчиня-
ющихся предсказаниям работы [16]. Происхождение
этих осцилляций мы связываем с бислойной структу-
рой HoTe3. Эти осцилляции практически полностью
сосредоточены в области малых магнитных полей
(B . 4Tл в случае HoTe3), которая обычно отбра-
сывается при анализе квантовых осцилляций прово-
димости. Таким образом, исследование осцилляций
в области малых магнитных полей позволят изучать
тонкое расщепление энергетических зон.
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