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Исследовано влияние конечной массы магнитных монополей на временную и пространственную дис-
персию магнитной восприимчивости спинового льда. Показано, что в низкочастотной области сохраня-
ется дебаевская зависимость восприимчивости от частоты, тогда как в высокочастотной области вос-
приимчивость убывает с ростом частоты быстрее. В результате устраняется нарушение правила сумм,
характерное для дебаевской зависимости. Также обсуждается возможность реализации коллективных
возбуждений в системе магнитных монополей при высоких частотах, которые аналогичны плазмонам в
системах с электрическим зарядом.
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1. Введение. Спиновым льдом называют со-
единения типа Ho2Ti2O7 и Dy2Ti2O7, которые де-
монстрируют необычные магнитные корреляции [1].
Магнитные ионы Ho3+ и Dy3+ расположены в вер-
шинах правильных тетраэдров, связанных в трех-
мерную пирохлорную решетку. Эквивалентно, такую
магнитную решетку можно представлять как решет-
ку, образованную серединами связей решетки ти-
па алмаза. Благодаря сильной анизотропии магнит-
ные моменты (далее спины) могут быть направлены
только вдоль локальных осей анизотропии, которые
совпадают со связями решетки типа алмаза. В ос-
новном состоянии направления спинов удовлетворя-
ют правилу льда: два спина направлены к центру и
два спина от центра каждого тетраэдра (см. рис. 1).
Это правило приводит к вырожденному основному

состоянию, степень вырождения которого экспонен-
циально растет с числом спинов в образце, а также к
неочевидному топологическому порядку [2, 3]. Чтобы
проиллюстрировать его, удобно представить направ-
ления спинов в основном состоянии как систему за-
путанных струн, в которых спины направлены вдоль
одного из направлений струны (одна из таких струн
выделена на рис. 1). Тогда правило льда гарантиру-
ет, что любая струна является или замкнутой или
оканчивается на границе образца.

В основном состоянии система спинов является
замороженной, и невозможно переориентировать ни-
какой спин без нарушения правила льда, т.е. без по-
вышения энергии. Переворот любого спина наруша-
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Рис. 1. Спины расположены в середине связей алмаз-
ной решетки, стрелками показаны направления спинов
в основном состоянии. Выделены спины, переворот ко-
торых приведет к рождению и движению пары магнит-
ных монополей струны, см. рис. 2

ет правило льда на двух смежных вершинах, обра-
зуя одну вершину с тремя спинами, направленными
к ней и одним спином от вершины, и вторую вершину
с тремя спинами от и одним спином, направленным к
вершине. Эти вершины несут положительный и от-
рицательные магнитный поляризационный заряд и
называются emergent магнитными монополями [4–6].
Последующими переворотами спинов магнитные мо-
нополи могут быть удалены на большое расстояние
(см. рис. 2). Важно, что при движении магнитных
монополей происходит изменение направления спи-
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Рис. 2. Переворот спинов вдоль струны означает созда-
ние и разделение положительного (A) и отрицатель-
ного (B) магнитных монополей. И наоборот, движение
монополей приводит к переориентации спинов вдоль
пройденного пути, второй монополь того же знака не
может пройти тем же путем

нов на пути их следования. Чтобы избежать недопо-
нимания, заметим: это не истинные магнитные моно-
поли, приводящие к соотношению ∇ ·B 6= 0, а псев-
домонополи, приводящие к соотношению ∇ ·H 6= 0.
Тем не менее emergent магнитные монополи очень по-
лезны, они могут рассматриваться как классические
квазичастицы, позволяющие удобно описать отклик
системы магнитных атомов спинового льда на прило-
женное магнитное поле. Теория такого отклика была
впервые предложена в [4], а ее обобщение для неод-
нородных магнитных полей было дано в [7].

Однако теория, разработанная в работах [4, 7], об-
ладает двумя взаимосвязанными недостатками. Во-
первых, она приводит к дебаевской зависимости вос-
приимчивости от частоты, для которой характерно
нарушение правила сумм [8]. Во-вторых, эта теория
является теорией релаксации, но не динамики, так
как она не описывает никаких инерционных эффек-
тов. Оба недостатка являются прямым следствием
нулевой массы emergent магнитных монополей в этой
теории. В конструктивной работе [9] впервые было
показано, что введение конечной массы магнитных
монополей приводит к восстановлению правила сумм
для магнитной восприимчивости. В этой работе при-
ведено детальное обсуждение физического смысла
конечной массы магнитных монополей, ее аналогии
с эффективной массой магнитных доменных стенок.
Однако, в работе [9] был рассмотрен только случай
однородного магнитного поля, т.е. пространственная
дисперсия не рассматривалась. При таком рассмот-

рении невозможно провести различие между попе-
речной и продольной восприимчивостями, которые,
как мы покажем ниже, существенно различаются.

В этой работе мы рассмотрим общий случай дина-
мики магнитной системы спинового льда в перемен-
ном и неоднородном магнитном поле. Мы рассчита-
ем поперечную и продольную восприимчивость как
функцию частоты и волнового вектора, покажем, что
введение конечной массы магнитных монополей вос-
станавливает правило сумм, а также обсудим воз-
можность появления в высокочастотной области кол-
лективных возбуждений системы магнитных моно-
полей, аналогичных плазмонам в системах с электри-
ческим зарядом. Далее, в разделе 2, мы коротко опи-
шем модель, основные уравнения и их решения для
магнитной восприимчивости. В разделе 3 мы обсу-
дим полученные результаты, дадим численные оцен-
ки различных параметров и обсудим возможные кол-
лективные возбуждения в системе магнитных моно-
полей при высоких частотах. В этом же разделе мы
обсудим возможность использования полученных ре-
зультатов для экспериментального измерения массы
магнитных монополей и различные следствия, кото-
рые могут быть использованы для проверки модели
магнитных монополей.

2. Модель и основные уравнения. Мы будем
описывать отклик спинового льда на приложенное
переменное и неоднородное поле в терминах магнит-
ных монополей, частично описанных во введении.
При достаточно низкой температуре концентрация
магнитных монополей низка, и их можно рассмат-
ривать как почти невзаимодействующие классиче-
ские квазичастицы. Это делает использование кар-
тины магнитных монополей гораздо более удобным
способом описания, чем непосредственное рассмотре-
ние сильно взаимодействующих спинов, концентра-
ция которых предельно высока.

Единственное взаимодействие или точнее корре-
ляция между магнитными монополями, состоит в
том, что если по некоторому пути прошел монополь,
то второй монополь того же знака по этому же пути
пройти не может (см. рис. 1, 2). Такая корреляция мо-
жет быть описана как появление поляризации в маг-
нитной системе и соответственно появление некото-
рого поля, препятствующего потоку магнитных мо-
нополей. Для количественного описания этой корре-
ляции мы будем использовать теорию Жаккара, ко-
торая была разработана для решения аналогичной
проблемы в физике водяного льда [10], в обозначе-
ниях работы [7]. Для учета конечной массы магнит-
ных монополей в уравнения для потоков частиц мы
добавим слагаемые, пропорциональные первым про-
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изводным от потоков по времени. Обоснование такой
модификации теории Жаккара будет дано ниже.

С учетом сказанного уравнения, описывающие
поведение магнитных монополей во внешнем магнит-
ном поле, можно записать в следующем виде:

Γ±
∂j±
∂t

+j± =
σ±
Q2

±
[Q±(H+h)−η±ΦΩ]−D±∇δn±, (1)

∂Ω/∂t =
∑

±
η±j±, (2)

∂δn±/∂t = −∇ · j±, (3)

∇ · h = 4π
∑

±
Q±δn±. (4)

Здесь j± – плотности потоков магнитных монополей,
H, h – внешнее магнитное поле и магнитное поле
неоднородного распределения магнитных монополей
соответственно, Ω = M/Q – конфигурационный век-
тор, пропорциональный намагниченности. Величины
σ±, D±, Q± = ±Q – проводимости, коэффициенты
диффузии и заряды магнитных монополей, η± = ±1.
Величина Φ = 8akBT/

√
3 рассчитана в работе [11],

a – длина связи, kB , T – постоянная Больцмана и тем-
пература соответственно. Уравнения (1) дают плот-
ности потоков монополей под действием обобщенной
термодинамической силы. Уравнение (2) описывает
конфигурационный вектор, возникающий из-за пото-
ков магнитных монополей. Согласно уравнениям (1),
это внутреннее поле, тормозящее потоки монополей.
Уравнения (3) – уравнения непрерывности, и урав-
нение (4) – магнитный аналог уравнения Пуассона.

Единственное отличие системы уравнений (1)–(4)
от обычной системы уравнений, описывающих ре-
лаксацию в спиновом льде, заключается в наличии
первых производных по времени от потоков в левых
частях уравнений (1) [4, 6]. Эти слагаемые учитыва-
ют инерционные свойства магнитных монополей, они
пропорциональны их массам, и фактически позво-
ляют описать динамику магнитных монополей. Что-
бы выяснить физический смысл такой модификации
обычных уравнений для потоков, мы приведем урав-
нения (1) к следующему виду:

∂p±
∂t

+
p±
τ±

+ = [Q±(H+h)−η±ΦΩ]−kBT
∇δn±
n±

, (5)

где p± – импульсы магнитных монополей, τ± =

Γ± = σ±m±/Q2
±n± – времена релаксации импульса,

m± – массы магнитных монополей. При получении
уравнения (5) мы использовали соотношения Эйн-
штейна σ± = Q2

±D±n/kBT , где n± – равновесные

концентрации. Так как уравнения (5) совпадают с
уравнениями теории Друде для электронов, то ис-
пользованное нами описание инерционных эффектов
аналогично теории Друде.

Далее, в Фурье представлении система уравнений
превращается в следующую систему линейных урав-
нений:

(−iωΓ±+1)j±+iqD±δn± = ±(σ±/Q
2
±)[Q(H+h)−ΦΩ],

(6)

−iωΩ = j+ − j−, (7)

ωδn± = q · j±, (8)

iq · h = 4πQ(δn+ − δn−). (9)

Из этой системы линейных уравнений мы можем
найти намагниченность как функцию внешнего маг-
нитного поля, тем самым найти магнитную воспри-
имчивость как функцию частоты и волнового век-
тора. Чтобы упростить выкладки, далее мы предпо-
ложим равные подвижности и постоянные Γ± для
положительных и отрицательных монополей. Также
заметим, что магнитные заряды и концентрации рав-
ны по определению. Для решения удобно сначала ис-
ключить концентрации δn± = q ·j±/ω, затем плотно-
сти потоков j±. В результате получим промежуточ-
ную систему уравнений:

(−ω2Γ− iω)Ω+Dq(q ·Ω) =
2σ

Q2
[Q(H+ h)− ΦΩ],

q · h = −4πQ(q ·Ω). (10)

Для нахождения поперечной части восприимчиво-
сти в (10) следует положить h = 0, так как по-
ле неоднородного распределения магнитных монопо-
лей продольное. Но для получения продольной части
это поле отлично от нуля. По этой причине выраже-
ния для поперечной и продольной восприимчивостей
будут различаться. Рассматривая указанные случаи
отдельно, можно получить общее выражение для на-
магниченности M = QΩ через внешнее магнитное
поле в следующем виде:

Mα =

[

Q2/Φ

(1− iωτ − ω2τΓ)

(

δαβ − qαqβ
q2

)

+

+
Q2/Φ

(τ/τ ′ − iωτ − ω2τΓ + τDq2)

qαqβ
q2

]

Hβ, (11)

где времена релаксации определяются выражения-
ми:

τ = kBT/2DnΦ, τ ′ = kBT/2(4πQ
2 +Φ)Dn. (12)
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Выражение в квадратных скобках в правой части
уравнения (11) есть тензор магнитной восприимчи-
вости спинового χαβ(ω,q) как функция частоты и
волнового вектора, при этом первое и второе слага-
емое описывают поперечную и продольную воспри-
имчивости соответственно.

В заключение этого раздела сделаем следующие
замечания. Во-первых, выражение для поперечной
восприимчивости совпадает с результатом работы
[9], тогда как выражение для продольной восприим-
чивости заметно отличается. Во-вторых, в работе [9]
рассматривался отклик на однородное магнитное по-
ле, что в нашем подходе соответствует предельно-
му переходу q → 0. Результат такого перехода для
выражения qαqβ/q2 зависит от того, по какому пути
волновой вектор стремится к точке q = 0. Эта неод-
нозначность физически означает зависимость намаг-
ниченности образца во внешнем однородном поле от
формы образца (зависимость от размагничивающего
фактора). Таким образом, если сначала рассмотреть
восприимчивость, зависящую от волнового вектора,
а затем перейти к пределу q → 0, то зависимость
от формы образца сохраняется. Если же предель-
ный переход q → 0 совершить в начальных уравне-
ниях, как это было сделано в [9], то зависимость от
формы образца теряется, что неверно. Эта неэквива-
лентность порядка предельных переходов является
следствием того, что намагниченность, как и поля-
ризация, не является чисто объемной величиной, а
существенно зависит от граничных условий на по-
верхности образца [12].

3. Обсуждение результатов. Для обсужде-
ния результатов полезно выписать действительные
и мнимые части поперечной и продольной воспри-
имчивости, которые следуют из формулы (11):

χ⊥
Re =

Q2

Φ

1− ω2τΓ

(1 − ω2τΓ)2 + (ωτ)2
,

χ⊥
Im =

Q2

Φ

ωτ

(1− ω2τΓ)2 + (ωτ)2
,

(13)

χ
‖
Re =

Q2

Φ

τ/τ ′ + τDq2 − ω2τΓ

(τ/τ ′ − ω2τΓ + τDq2)2 + (ωτ)2
,

χ
‖
Im =

Q2

Φ

ωτ

(τ/τ ′ − ω2τΓ + τDq2)2 + (ωτ)2
.

(14)

Из этих формул прямо следует, что мнимые ча-
сти восприимчивостей при высоких частотах убыва-
ют как χIm(ω) ∼ ω−3. Следовательно интегралы от
ωχIm(ω) по ω сходятся на верхнем пределе, что озна-
чает выполнение правила сумм.

Чтобы сделать дальнейшее обсуждение менее
формальным и более близким к эксперименталь-

ной ситуации, мы приведем численные оценки ти-
пичных значений различных величин, характеризу-
ющих спиновый лед. Во-первых, типичные темпера-
туры экспериментов по изучению спинового льда ле-
жат в области 0.05 до 2 К [13–16]. Энергия образо-
вания пары магнитных монополей в указанных вы-
ше соединениях около 10 K [17, 18]. Такое значение
энергии рождения пары монополей при температуре
1 К дает равновесную концентрацию 3.6 · 1019 см−3

[4]. При температурах выше, чем 2 К концентрация
магнитных монополей настолько велика, что опи-
сание на языке магнитных монополей теряет свое
преимущество. Оценку величины магнитного заря-
да можно получить по формулам работ [4, 5]: Q ≈
≈ 4.3 · 10−12 дин/Гс [4, 5]. Выбранные значения пара-
метров приводят к следующим оценкам следующих
величин (при температуре 1 К):

Φ ≈ 2.7 · 10−23 эрг · см, Q2/Φ ≈ 0.7 эрг/(Гс−1см−3),

τ ≈ 10−4 с, τ ′ ≈ 10−5 c. (15)

Наконец, для коэффициента диффузии мы возьмем
значение D ≈ 8 · 10−13 см2/c, которое остается почти
постоянным при температурах ниже 1 К [19].

Из (15) видно, что время релаксации продоль-
ной восприимчивости примерно на порядок меньше
времени релаксации поперечной восприимчивости, и
это различие растет с понижением температуры. Да-
лее отметим, что выражение для времени релаксации
продольной восприимчивости включает в себя Q2,
что говорит о вкладе энергии взаимодействия маг-
нитных монополей во время продольной релаксации.
Именно этот вклад делает время продольной релак-
сации более коротким по сравнению со временем по-
перечной релаксации. Разница в дисперсии попереч-
ной и продольной восприимчивости проиллюстриро-
вана на рис. 3, 4.

Для оценки массы можно использовать выраже-
ниеm = (kBT/D)Γ, смотри первый абзац после урав-
нения (5). При этом параметр Γ, который характери-
зует инерцию магнитных монополей, связан с часто-
той, при которой начинается отклонение от Дебаев-
ской зависимости. Например, если такая частота по-
рядка 109 с−1, тогда соответствующее значение пара-
метра инерции дает для массы монополей значение
порядка ≈ 1.7 · 10−13 г. Для более точного определе-
ния массы магнитных монополей можно использо-
вать смену знака действительных частей восприим-
чивостей в формулах (13), (14). Частоты, при кото-
рых происходит смена знака, удовлетворяют урав-
нениям Γτω2

⊥ = 1, Γτ ′ω2
‖ = 1 при этом значение ω‖

определяется при q = 0. Эти уравнения вместе с фор-
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Рис. 3. Действительная (сплошная линия) и мнимая
части (пунктирная линия) поперечной восприимчиво-
сти при Γ = 10−4 c (масса 1.7 · 10−8 г), τ = 10−4 c,
τ ′ = 10−5 c, T = 1 К

Рис. 4. Действительная (сплошная линия) и мнимая
части (пунктирная линия) продольной восприимчиво-
сти при Γ = 10−4 c (масса 1.7 · 10−8 г), τ = 10−4 c,
τ ′ = 10−5 c, T = 1 К

мулой Γ = σm/Q2n, дают два способа определения
массы монополей через эти частоты:

m2 = 2nΦ/ω2
⊥, m2 = 2n(4πQ2 +Φ)/ω2

‖. (16)

Но так как оба способа должны давать одинаковый
результат, то мы приходим к следующему соотноше-
нию между частотами смены знака действительных
частей поперечной и продольной восприимчивостей:

ω2
‖/ω

2
⊥ = 4πQ2/Φ+ 1. (17)

Соотношение (17) может быть проверено экспери-
ментально, и его выполнение может случить крите-
рием применимости теории магнитных монополей.

Наконец отметим, что продольная восприимчи-
вость имеет полюса, которые определяют спектр кол-

лективных возбуждений в системе магнитных моно-
полей. В общем случае эти возбуждения являются
сильно затухающими, но при условии 4γ/τ ′ ≫ 1 (или
m ≫ 4.5 · 10−7 г), затухание мало, и спектр возбуж-
дений описывается выражением:

ωp =
√

(1/τ ′ +Dq2)/Γ. (18)

Из этого выражения видно, эти коллективные воз-
буждения аналогичны плазменным колебаниям в си-
стемах с электрическим зарядом. Действительно,
для однородных колебаний формула (18) дает ωp ≈
≈
√

8πQ2n/m, что совпадает с выражением для
плазменной частоты однородных колебаний.

Остановимся на возможной интерпретации мас-
сы магнитных монополей. В конечном итоге конеч-
ная масса обусловлена наличием инерции в систе-
ме, т.е. невозможностью мгновенного изменения ори-
ентации магнитных моментов. При этом неважно,
каким образом происходит переориентация магнит-
ных моментов: термически активированным или тун-
нельным способом. В любом случае этот процесс дол-
жен характеризоваться конечными временами, т.е.
быть инерционным. Именно это обстоятельство яв-
ляется основанием для введения феноменологиче-
ского параметра Γ в данной работе. Другой воз-
можный подход к введению массы магнитных моно-
полей – построение последовательной микроскопи-
ческой теории монополей. К сожалению, в настоя-
щее время такая теория отсутствует. Наконец, отме-
тим следующую аналогию. Из рисунка 2 видно, что
каждая пара магнитных монополей связана струной,
направленной от отрицательного к положительному
монополю. По сути, струна аналогична одномерной
структуре упорядоченных моментов. В этом смысле
она аналогична упорядоченной одномерной системе,
погруженной в трехмерную решетку, а ее концы яв-
ляются доменными стенками. По этой причине воз-
никает аналогия между массой монополей и эффек-
тивной массой доменных стенок, обсуждаемой в тео-
рии магнитных систем.
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