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Получено и проанализировано точное решение для дифракции электромагнитной волны на контакте
двумерных электронных систем (2ДЭС) для электрического поля, поляризованного вдоль края. Особое
внимание уделено контактам с металлом и изолированным краям 2ДЭС. В первом случае электрическое
поле на краю стремится к нулю; в последнем случае оно стремится к конечному значению, которое ано-
мальным образом зависит от экранирующих свойств 2ДЭС. Для обоих типов края и емкостного типа
двумерной проводимости падающая волна возбуждает поперечные электрические двумерные плазмоны.
Амплитуда возбужденных TE-плазмонов максимизируется и становится порядка амплитуды падающей
волны для емкостного импеданса 2DES порядка импеданса свободного пространства. Как для большого,
так и для малого импеданса 2ДЭС амплитуда TE-плазмонов стремится к нулю по степенным законам,
которые выводятся в работе в явном виде.
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Контакты двумерных электронных систем
(2ДЭС) друг с другом и с металлами являются
одними из центральных объектов в двумерной
оптоэлектронике. Такие переходы способны генери-
ровать фототок [1–4], что обеспечивает их богатое
применение как в оптоэлектронной технике, так и
в фундаментальных исследованиях взаимодействия
света с веществом. В то время как многочисленные
исследования были посвящены микроскопическим
теориям электронного транспорта на переходах
во внешних электромагнитных (ЭМ) полях [5–8],
гораздо меньше известно о дифракции самих ЭМ
полей на этих переходах. Проблема дифракции ЭМ
волн на латерально неоднородной 2ДЭС является
сложной и обычно изучается с помощью электромаг-
нитного моделирования [9, 10] или приближенных
представлений локальных полей в виде суперпо-
зиции плоских волн [11, 12]. Совсем недавно было
обнаружено, что мощный аналитический метод
Винера–Хопфа для решения интегральных уравне-
ний задачи рассеяния в полубесконечных областях
может быть успешно применен к краевой дифрак-
ции в 2ДЭС [13–17]. С помощью этого метода было
получено несколько замечательных аналитических
результатов. Они включают универсальное значение
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электромагнитного поглощения на контакте металл-
2ДЭС [16], универсальное значение амплитуды дву-
мерных плазмонов, запущенных на изолированном
двумерном крае [14], но ими не ограничиваются.

Все ранние исследования дифракции на контак-
тах 2ДЭС [13, 14, 16] касались падающих полей с маг-
нитным полем H0 вдоль края. Следовательно, элек-
трическое поле E0 было ортогонально краю. Для та-
кой поляризации локальное электрическое поле E(x)

значительно усиливалось за счет динамического “эф-
фекта громоотвода”. Такое усиление было подтвер-
ждено экспериментально с помощью исследований
фототока, зависящего от поляризации, на переходах
металл–графен [18–20].

Другая поляризация падающего поля, когда
электрический вектор E0 направлен вдоль края,
еще не привлекла внимания в теории двумерной
краевой дифракции. Настоящая статья заполняет
этот пробел. Для такой поляризации ожидается,
что электрическое поле будет подавлено, особен-
но если 2DES контактирует с металлом с очень
большой проводимостью. Хотя подавление поля
не так привлекательно, как усиление поля, его
конкретная величина важна для проектирования
поляризационно-чувствительных и поляризационно-
разрешающих фотодетекторов [19, 21]. Другим ин-
тригующим аспектом такой поляризации является
возможность возбуждения двумерных поперечных
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электрических (TE) плазмонов [22] в такой про-
стой геометрии. Такие волны могут существовать
только для емкостного типа проводимости 2DES
σ = σ′ + iσ′′, σ′′ < 0 (в обозначениях e−iωt для ком-
плексных амплитуд полей, зависящих от времени).
Эти волны не накапливают электрический заряд
при распространении, поэтому отличаются от обыч-
ных продольных плазмонов, существующих при
σ′′ > 0. В то время как проводимость внутризонного
движения свободных носителей всегда индуктивная,
емкостная проводимость проявляется вблизи краев
межзонного поглощения [23]. В частности, это про-
исходит для энергий фотонов ~ω, близких к ширине
запрещенной зоны Eg (если она присутствует) [23]
или близких к удвоенной энергии Ферми, 2µ, в
случае легированного графена [22, 24]. Формальное
решение задачи дифракции в обеих поляризациях
для полубесконечного неидеально проводящего слоя
можно найти в более старых работах [25, 26]. Однако
запуск ТЕ-плазмонов для емкостной проводимости
не был изучен в этих работах, предположительно,
из-за нерелевантности этого случая для класси-
ческих металлов. Случай дифракции на стыке
разнородных материалов также не рассматривался.

Мы переходим к получению аналитического ре-
шения для дифракции ЭМ волн на стыке двумер-
ных электронных систем в ТЕ-поляризации, т.е. для
электрического вектора волны, направленного вдоль
края. Особое внимание будет уделено асимптотиче-
ским значениям поля вблизи стыка и вдали от него, а
также амплитуде ТЕ плазмонов, запускаемых краем.

Исследуемая система показана на рис. 1а. Дву-
мерные электронные системы с проводимостями σL
и σR лежат в плоскости z = 0 и соприкасаются по
прямой x = 0. Электрическое поле падающей вол-
ны направлено вдоль оси y и имеет вид Ey(x) =

= E0e
ikxx, где kx = k0 cos θ – x-компонента волнового

вектора, k0 – волновое число, а θ – угол скольже-
ния. Гармоническая зависимость всех величин e−iωt

от времени будет предполагаться и далее опускать-
ся, также будет опускаться нижний индекс для y-
компоненты. Уравнение рассеяния для электриче-
ского поля в плоскости 2ДЭС z = 0 имеет вид (см.
дополнительные материалы, раздел I, для вывода)

E (x) = E0e
ikxx − Z0k0

4

+∞
∫

−∞

H0 (k0 |x− x′|) j (x′) dx′,

(1)
где Z0 – импеданс свободного пространства (4π/c в
гауссовых единицах или

√

µ0/ε0 ≈ 377 Ом в едини-
цах СИ); H0 есть функция Ганкеля нулевого поряд-

Рис. 1. (Цветной онлайн) (а) – Постановка задачи рас-
сеяния: s-поляризованная электромагнитная волна с
волновым вектором k0 падает на латеральный контакт
2ДЭС с проводимостями σL и σR под углом скольже-
ния θ. Схематический вид зависящего от координат
дифрагированного электрического поля показан крас-
ной пунктирной линией; поле может иметь TE плаз-
монную компоненту с длиной волны λpl (b) – Анали-
тическая структура задачи рассеяния в комплексной
q-плоскости. Полюса падающего поля появляются при
q = kx ± iǫ, точки ветвления диэлектрических функ-
ций ε(q) начинаются при q = k0 и уходят в бесконеч-
ность. Дополнительные плазменные полюса могут при-
сутствовать при определенном знаке 2d проводимостей
η′′L/R

ка, являющаяся фундаментальным решением волно-
вого уравнения в двух измерениях, а j (x) – распре-
деление поверхностных токов, вызванных волной, в
2ДЭС. Для формулировки полного уравнения рассе-
яния с одной неизвестной функцией, электрическим
полем E(x), мы используем закон Ома в локальной
форме j (x) = σ(x)E(x), где проводимость изменяет-
ся ступенчатым образом σ (x) = σLθ (−x) + σRθ (x).

Решение (1) основано на методе Винера–Хопфа.
Он включает в себя расщепление полного поля на
левую и правую компоненты, E (x) = EL(x)θ (−x) +
+ER(x)θ (x), преобразование Фурье основного урав-
нения с переходом к волновому вектору q в качестве
переменной, изучение возникающих функций ком-
плексной q-переменной. Фурье образы полей EL(q)
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и ER(q) будут аналитическими в верхней и ниж-
ней полуплоскостях комплексной переменной q, со-
ответственно. Перед фактическим преобразованием
Фурье разумно ограничить все функции в конеч-
ную область реального пространства. Мы заменя-
ем исходное поле согласно E0e

ikxx → E0e
ikxxe−ǫ|x|,

что имитирует ограничение падающего луча аперту-
рой размером ∼ ǫ−1. Мы также предполагаем некото-
рую остаточную диссипацию в материалах, окружа-
ющих 2ДЭС, что равносильно замене k0 → k0(1+iδ),
δ ≪ 1 в аргументе электромагнитного пропагатора.
Мы увидим, что конечные результаты не будут зави-
сеть от вспомогательных значений ǫ и δ. Тем не ме-
нее, сохранение их конечной величины важно в ходе
решения.

После преобразования Фурье уравнение рассея-
ния (1) имеет вид

εL (q)EL (q) + εR (q)ER (q) =

E0

[ −i
q − (kx + iǫ)

+
i

q − (kx − iǫ)

]

, (2)

где поперечно-электрические диэлектрические про-
ницаемости имеют вид

εi (q) = 1 + ηi
k0

√

k20 − q2
, ηi =

Z0σi
2

, i = {L,R}.

(3)
Разрезы диэлектрических функций εi(q) начинают-
ся с q = ±k0 и доходят до ±i∞, соответственно,
не пересекая действительную ось. Такой выбор про-
диктован затухающим характером электромагнитно-
го пропагатора H0(k0|x− x′|) на больших расстояни-
ях. Ключевую роль в последующем решении будут
играть “факторизованные функции” εi+ (q) и εi− (q).
Они аналитичны в верхней и нижней полуплоско-
стях комплексной переменной q. Факторизация здесь
будет выполнена с помощью теоремы Коши, при-
мененной к узкой полосе, охватывающей веществен-
ную ось, хотя возможны и другие полуаналитические
подходы к проблеме факторизации [16, 27]. Фактори-
зация Коши дает следующий результат:

εi,± (q) = exp







± 1

2πi

+∞
∫

−∞

ln εi (u) du

u− (q ± iγ)







. (4)

После алгебраических преобразований, подробно
описанных в дополнительных материалах, разде-
ле II, уравнение (2) принимает вид

εL+ (q)

εR+ (q)
EL (q) +

εR− (q)

εL− (q)
ER (q) = (5)

E0

εR+ (kx) εL− (kx)

[

i

q − (kx − iǫ)
+

−i
q − (kx + iǫ)

]

,

где первые члены в левой и правой частях являют-
ся аналитическими в верхней полуплоскости, а вто-
рые члены в левой и правой частях являются анали-
тическими в нижней полуплоскости. Следовательно,
можно приравнять функции, аналитические в соот-
ветствующих полуплоскостях, почленно. Это приво-
дит к окончательному решению для электрических
полей

EL (q) =
+iE0

1 + ηL/ sin θ

εR+ (q)

εL+ (q)

εL+ (kx)

εR+ (kx)

1

q − (kx − iǫ)
,

(6)

ER (q) =
−iE0

1 + ηR/ sin θ

εL− (q)

εR− (q)

εR− (kx)

εL− (kx)

1

q − (kx + iǫ)
.

(7)

Уравнения (6) решают задачу рассеяния в обла-
сти Фурье. Они хорошо согласуются с результатами
электромагнитного моделирования, выполненного с
использованием пакета CST Microwave Studio, как
показано в дополнительных материалах, разделе III.
Полученное решение применимо пока лишь к плоско-
сти 2ДЭС z = 0. Решение вне этой плоскости можно
получить путем умножения на “фазовую экспоненту”

E(q, z) = [EL(q, z = 0) + ER(q, z = 0)]ei
√

k2
0−q2|z|.

Мы ограничим наше обсуждение случаями “обо-
рванного края 2ДЭС” (ηL = 0) и контакта 2ДЭС с
металлом (|ηL| ≫ 1). Точное условие хорошей метал-
лической проводимости |ηL| ≫ 1 зависит от толщины
металла t. Если t оказывается больше глубины скин-
слоя, ηL является произведением объемной проводи-
мости и глубины скин- слоя. Это ни что иное, как
показатель преломления металла nM . За исключе-
нием ультрафиолетового диапазона, у большинства
металлов |nM | ≫ 1. Как только t оказывается ни-
же глубины скин-слоя, ηL становится произведением
объемной проводимости металла в единицах c/2π и
его толщины t. Можно показать, что даже для t ∼ 10

нм и ω/2π ∼ 1 ТГц мы имеем |ηL| ∼ 102 для ме-
таллов, таких как золото и медь. Поля для изоли-
рованного края 2ДЭС и контакта с металлом будут
снабжены символами× и ↔ соответственно. Нижний
индекс R у “правых” функций будет отныне опущен,
т.е. εR ≡ ε, ηR ≡ η. После взятия надлежащего пре-
дела для “левой” диэлектрической функции, мы при-
ходим к явной форме электрического поля в 2ДЭС
для обоих типов края:

E×
R (q) =

−iE0

1 + η/ sin θ

ε− (kx)

ε− (q)

1

q − (kx + iǫ)
, (8)

E↔
R (q) =

−iE0

1 + η/ sin θ

√
k0 − kx√
k0 − q

ε− (kx)

ε− (q)

1

q − (kx + iǫ)
.

(9)
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Поведение электрического поля в непосредствен-
ной близости от перехода, x → +0, можно понять,
проанализировав затухание компонент Фурье при
больших q. Спектр поля, контактирующего с ме-
таллом (9), быстро затухает как q−3/2. Это означа-
ет, что поле на самом переходе равно нулю. Это и
вполне ожидаемо, так как электрическое поле в ме-
талле отсутствует, а его тангенциальная составляю-
щая непрерывна на границе раздела. Спектр элек-
трического поля для изолированного края (8) за-
тухает q−1. Это означает, что поле на краю конеч-
но. Его значение можно связать с вычетом Фурье-
компоненты на бесконечности

E× (x = 0) = lim
q→∞

[

iqE×
R (q)

]

=
E0ε− (kx)

1 + η/ sin θ
. (10)

Полностью аналитический результат может быть по-
лучен для случая нормального падения, kx = 0. В
этом случае главная часть интеграла Коши (4) рав-
на нулю в силу антисимметрии подынтегрального
выражения. Полюсная часть интеграла Коши вы-
числяется тривиально, что приводит к ε− (q = 0) =

= ε
1/2
− (q = 0). Примечательно полученное аномаль-

ное экранирование падающего поля:

E× (x = 0, kx = 0) =
E0√
1 + η

. (11)

Это отличается от линейного экранирования падаю-
щего поля протяженной двумерной электронной си-
стемой, E = E0/(1 + η). Можно сказать, что усече-
ние половины двумерной системы приводит к умень-
шению показателя степени в законе экранирования
вдвое.

Поучительно выявить особенности спектров поля
ER(q). Они связаны с волнами, запускаемыми при
дифракции на краю. На рисунке 2а показаны спек-
тры электрического поля ER(q) для 2ДЭС с метал-
лическим контактом и различными значениями по-
верхностной проводимости. Внешняя волна падает
с kx = 0, 3k0. Естественно, все спектральные кри-
вые имеют полюс при q = kx, который соответству-
ет падающему полю, экранированному 2ДЭС. Дру-
гая (более слабая) сингулярность присутствует при
q = k0 в отсутствие 2ДЭС (η = 0, черная линия).
Спектр электрического поля вблизи нее ведет себя
как ER(q) ∼ (k0 − q)1/2. Это соответствует излу-
чению “линии диполей”, расположенных вдоль ли-
нии контакта. В реальном пространстве такая слабая
сингулярность соответствует цилиндрической волне
E(x) ∼ |x|−1/2eik0x. С увеличением проводимости
2ДЭС это излучение в значительной степени мо-
дифицируется. Для индуктивной 2d-проводимости,

Рис. 2. (Цветной онлайн) (а) – Спектральная структура
дифрагированных полей, т.е. зависимости дифрагиро-
ванного поля ER(q) от волнового числа при различных
значениях поверхностной проводимости η. Сплошные и
пунктирные линии соответствуют емкостной и индук-
тивной проводимостям, соответственно. (b) – Структу-
ра дифрагированного поля в реальном пространстве в
случае емкостной двумерной проводимости η′′ = −0.8.
Оба графика представлены для 2ДЭС с металлическим
контактом при η′ = 5 × 10−3, kx = 0, 3k0

η′′ > 0, сингулярность размывается, и все ее следы
исчезают при η′′ ∼ 1. Можно сказать, что индуктив-
ность 2d-электронов препятствует распространению
излучения.

Для емкостной 2d проводимости, η′′ < 0, спек-
тральные особенности более интересны. Начальная
слабая сингулярность при q = k0 смещается впра-
во и становится хорошо развитым полюсом. Ширина
спектрального пика остается конечной только в меру
конечности диссипативной проводимости, η′ 6= 0. Си-
туация соответствует запуску поперечных электри-
ческих двумерных плазмонов краем. Рисунок 2b ил-
люстрирует эту ситуацию в реальном пространстве:
медленная модуляция электрического поля с перио-
дом k−1

x пронизана более быстрой модуляцией из-за
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плазменной волны. Длина волны плазмона уменьша-
ется с ростом |η′′|.

Более детальное изучение электрического поля в
реальном пространстве можно осуществить с помо-
щью обратного преобразования Фурье уравнения (6):

ER (x) =
1

2π

+∞
∫

−∞

dqER (q) eiqx. (12)

Чтобы обеспечить затухание показателя Фурье eiqx

при x > 0, мы замыкаем контур интегрирования для
ER(x) в верхней полуплоскости (ВПП), синяя линия
на рис. 1b. Здесь мы отмечаем, что спектр ER(q) неа-
налитичен в ВПП, тем не менее, его сингулярности
легко распознаются. Распознавание достигается пу-
тем записи ε−(q) = ε(q)/ε+(q) в знаменателях урав-
нений (8) и (9). При такой замене все сингулярности
ER(q) в ВПП сводятся к (1) полюсу при q = kx + iǫ,
соответствующему падающей волне, экранированной
2ДЭС (2) полюсу в нуле диэлектрической функции
ε(q) (3) разрезу ε(q), идущему от +k0 до +i∞. Можно
показать, что полюс TE-моды # 2 существует только
при η′′ < 0 и расположен в

qpl = k0
√

1− η2. (13)

Кажущаяся независимость qpl от знака η′′ являет-
ся ложной и появляется из-за возведения в квадрат
двух слагаемых, составляющих ε(q). Из исходного
определения ε(q), уравнение (3), ясно, что его нули
могут существовать только при η′′ < 0. Три сингу-
лярности ER(q) в ВПП производят три вклада в поле
в реальном пространстве ER (x), соответственно:

ER (x) =
E0e

ikxx

1 + η/ sin θ
+ ieiqplx Res

q=qpl
ER (q)− Eb.c.(x).

(14)
Последний член, Eb.c.(x), является результатом об-
ратного преобразования Фурье спектра поля при об-
ходе разреза диэлектрической функции εR(q). Ре-
зультирующий вклад в электрическое поле быстро
спадает уже при x ∼ k−1

0 . Поле запущенных TE волн
распространяется дальше, по крайней мере, для сла-
бо диссипативной проводимости. Поскольку дально-
действующее поле в значительной степени определя-
ется этой волной, естественно изучить ее амплитуду
Epl более подробно.

Явный расчет вычета при q = qpl приводит к сле-
дующим выражениям для амплитуды TE волны для
изолированной 2ДЭС

E×
pl =

E0

1 + η/ sin θ

ε− (kx) ε+ (qpl)

∂ε (q) /∂q|q=qpl

1

qpl − kx
, (15)

Рис. 3. (Цветной онлайн) Эффективность преобразова-
ния излучения свободного пространства в двумерные
ТЕ плазмоны для контакта 2ДЭС с металлом (а) и
оборванной 2ДЭС (b) как функция проводимости −η′′
при различных углах скольжения θ. Сплошные линии
получены с помощью точных выражений (15) и (16),
штриховые линии получены с помощью упрощенных
асимптотических выражений (17) для низкой проводи-
мости и () для высокой проводимости

и контакта 2ДЭС с металлом

E↔
pl = E×

pl

√
k0 − kx

√

k0 − qpl
. (16)

Коэффициенты преобразования излучения свобод-
ного пространства в TE плазмоны (15), (16) пока-
заны на рис. 3 как функции проводимости −η′′ при
различных углах скольжения θ. При этом предпола-
гается, что диссипативная часть проводимости очень
мала, η′ = 5× 10−3. Коэффициенты преобразования
стремятся к нулю для малой проводимости линейно
(для 2ДЭС с металлическим контактом) и квадра-
тично (для оборванной 2ДЭС). Это масштабирова-
ние можно показать аналитически, вспомнив, что все
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диэлектрические функции стремятся к единице при
η → 0. В этом пределе мы находим

E×
pl =

E0

2

|η′′|2

sin2 θ
2

, (17)

E↔
pl = E0

∣

∣

∣

∣

∣

η′′

sin θ
2

∣

∣

∣

∣

∣

. (18)

Эти асимптоты, показанные на рис. 3 штриховыми
линиями вблизи начала координат, хорошо согла-
суются с полными вычисленными коэффициентами
преобразования в пределе −η′′ ≪ 1.

Наконец, мы проанализируем коэффициен-
ты преобразования в противоположном пределе
|η′′| ≫ 1. Сложность заключается в оценке факто-
ризованных функций ε± при q = kx и q = qpl. Эти
функции теперь в значительной степени отличаются
от единицы, в то время как подынтегральное выра-
жение в факторизации Коши (4) имеет множество
особенностей. Чтобы справиться с этой проблемой,
мы явно выделяем все нули и сингулярности в
определении диэлектрической функции:

ε(q) =
q2 − q2pl

ηk0
√

k20 − q2faux(q)
, (19)

faux(q) = 1 +
1

η

√

k20 − q2

k0
. (20)

Факторизация Коши свободной от нулей и сингуляр-
ностей функции faux(q) гораздо проще. Более того,
если нас интересует только абсолютное значение ам-
плитуды ТЕ волны, а не ее фаза, следует рассматри-
вать только часть интеграла Коши, а именно

|faux±(q)| =
√

|faux(q)|e±I , (21)

I =
1

2π

+1
∫

−1

arctan
(√

1−u2

|η′′|

)

u− q/k0
du ≈

− 1

2 |η′′| k0

{

q, q < k0

q −
√

q2 − 1, q > k0

}

. (22)

Асимптотические значения амплитуды TE вол-
ны, полученные с помощью приведенной выше при-
ближенной методики, очень хорошо согласуются с
точно рассчитанными. Удивительно, но приближен-
ная схема отлично работает даже для |η′′| . 1, как
показано на рис. 3 штриховыми линиями.

В заключение сравним особенности дифракции
TE волны с особенностями ранее изученной TM
дифракции [16]. Электрическое поле для падающей

волны в ТМ поляризации усиливается при x = 0 син-
гулярным образом, ETM (x = 0) ≈ E0[η(1 + η)]−1/2.
Такое усиление является следствием эффекта громо-
отвода на остром металлическом крае. Эффект гро-
моотвода является поляризационно-селективным.
Для электрического поля вдоль края он исчезает,
вместо этого реализуется подавление поля динами-
ческими токами в металле. Сильное и неоднородное
электрическое поле для TM поляризации приводило
к очень большой эффективности преобразования
фотонов в плазмоны, которая масштабировалась по
закону |η′′|−1/2 для малой поверхностной проводи-
мости. Относительная гладкость дифрагированного
поля для TE поляризации приводит к умеренным
амплитудам запущенных плазменных волн. При
|η′′| ∼ 1 достигаются предельные значения ампли-
туды плазмона Epl ∼ E0 как для изолированной
2ДЭС, так и для 2ДЭС в контакте с металлом. В
то время как все компоненты электрического поля
в рассматриваемой поляризации остаются конеч-
ными, магнитное поле (будучи пропорциональным
электрическим градиентам) расходится вблизи изо-
лированного края. Это может привести к высокой
эффективности запуска 2d-магнонов [28, 29], а также
к локальному усилению сигналов электронного
спинового резонанса [30].

Представленный аналитический метод легко
обобщается на 2ДЭС, расположенные над идеаль-
ными проводниками (затворами). Это достигается

с помощью замен ηL/R → ηL/R(1 − e−2d
√

q2−k2
0 ), где

d – расстояние до затвора. С такой модификацией
станет возможным изучение гибридизации TE плаз-
монов с резонаторными модами, образованными
между 2ДЭС и ее затвором [31]. Предыдущие иссле-
дования задач рассеяния в таких пространственно
неоднородных 2ДЭС с затвором ограничивались
приближениями слабой нелокальности [32, 33].

Текущее исследование было посвящено задаче
рассеяния ЭМ волны. Другой класс электромагнит-
ных задач касается свойств собственных мод, под-
держиваемых краем [27, 34, 35], которые остаются в
значительной степени неизученными для “емкост-
ных” материалов с η′′ < 0. Краевые TE плазмоны, ес-
ли они и существуют, имели бы две ненулевые компо-
ненты электрического поля. Это усложнило бы ана-
лиз уравнения Винера–Хопфа, которое в этом слу-
чае становится матричным [36]. К счастью, недавно
появились эффективные методы факторизации для
таких матричных систем [37].

Все наши рассмотрения основывались на локаль-
ной модели проводимости 2ДЭС. Это оправдано
относительной гладкостью возникающих полей, по
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крайней мере, в пределе |η′′| . 1. Интересным аспек-
том нелокальности проводимости в TE-поляризации
является возможное возникновение сдвиговых волн
[38, 39]. Такие волны могут распространяться из-за
электронной вязкости по нормали к контакту; а неод-
нородность дифрагированного поля передает волне
необходимый импульс. Поэтому контакты металл-
2ДЭС, освещенные ЭМ волнами в ТЕ-поляризации,
являются удобной платформой для изучения экзоти-
ческих сдвиговых возбуждений.

Полученное решение для локальных полей, гене-
рируемых при дифракции на контакте, может быть
использовано в качестве базового блока для мо-
делирования двумерных фотодетекторов. В основе
преобразования света в ток может быть фототер-
моэлектрический эффект [6], разделение электрон-
дырочных пар полем барьера Шоттки [5], или фо-
тонное увлечение [40, 41]. Во всех этих случаях фо-
тоток является известным квадратичным функцио-
налом локальных эклектических полей, чьи конкрет-
ные значения могут быть вычислены с помощью на-
ших основных уравнений (6). Такая схема вычис-
ления фототока проще и прозрачнее, чем использо-
вавшиеся ранее ЭМ-симуляции [4, 9]. Она также мо-
жет дать аналитическое представление о предель-
ных характеристиках двумерных оптоэлектронных
устройств.
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