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В широкой области температур 2–300 K в магнитном поле до 9 Тл детально исследованы маг-
нитные свойства твердых растворов Mn1−xRhxSi с нецентросимметричной структурой В20, синтези-
рованных при высоких давлениях и температурах (8ГПа, 1500–1770 K). Для составов из интервла
0.15 ≤ x ≤ 0.8 обнаружен аномальный рост температуры Кюри TC в 8.4–11.5 раз по сравнению с
чистым спиральным магнетиком MnSi. Установлено, что TC увеличивается с концентрацией родия до
величин TC(x = 0.15) = 244± 4 K, TC(x = 0.4) = 299± 5 K и TC(x = 0.8) = 334± 6 K. Уникально высокие
значения температуры магнитного перехода вплоть до комнатных значений возникают в неупорядочен-
ной ферромагнитной фазе Гриффитса и могут являться следствием спин-флуктуационного механизма
усиления магнитного взаимодействия.
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1. Введение. Магнитные свойства нецентро-
симметричного магнетика моносилицида марганца,
MnSi, имеющего кристаллическую структуру типа
B20, определяются сочетанием основного ферромаг-
нитного (ФМ) обмена J и более слабого взаимодей-
ствия Дзялошинского–Мории D (D ≪ J) приводя-
щего к формированию спиральной магнитной струк-
туры с периодом L ∼ aJ/D ∼ 18 нм, значительно
превышающей постоянную решетки a = 4.56 Å [1, 2].
Для этого материала температура Кюри TC зави-
сит главным образом от доминирующего ФМ обме-
на и составляет TC ≈ 29K [3, 4]. Известные из лите-
ратуры данные по твердым растворам Mn1−xMexSi
(Me = Fe, Co) показывают, что увеличение концен-
трации замещающего марганец металла приводит к
уменьшению TC , причем при x = 0.1−0.15 достигает-
ся полное подавление магнитного перехода (TC = 0)

[5–7]. Такое поведение может быть интерпретировано
в рамках универсального сценария образования фа-
зы Гриффитса и квантовых критических явлений,
обусловленных беспорядком [6, 7].

Поскольку приложение внешнего давления также
подавляет магнитный переход у MnSi [8], то введение
примесей, реализующих увеличение постоянной ре-
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шетки (отрицательное химическое давление) может
привести к росту TC . Данный случай соответству-
ет замещению кремния в системах MnSi1−yGay and
MnSi1−yAly, где для концентраций y(Ga, Al) ∼ 0.04

наблюдался рост температуры Кюри до ∼ 40 K, что
соответствует увеличению постоянной решетки на
∆a = 0.01 Å по отношению к исходному MnSi [9]. По-
видимому, синтез этих соединений с y > 0.1 или за-
труднен, или невозможен, поэтому остается неясным
вопрос о возможной максимальной величине TC , ко-
торая может наблюдаться у таких материалов.

В настоящей работе сообщается об исследовании
магнитных свойств новой системы с отрицательным
химическим давлением Mn1−xRhxSi в области со-
ставов 0.15 ≤ x ≤ 0.8. Мы покажем, что замеще-
ние марганца родием приводит к гигантскому ро-
сту TC в 8.4–11.5 раз по сравнению с чистым MnSi
и для x = 0.8 температура Кюри оказывается вы-
ше комнатной температуры. Дополнительный инте-
рес к наблюдаемому усилению магнитного взаимо-
действия придает то обстоятельство, что он наблю-
дается в неупорядоченной магнитной системе типа
фазы Гриффитса.

2. Синтез образцов и методика экспери-

мента. Для получения поликристаллических образ-
цов Mn1−xRhxSi была использована методика син-
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теза в условиях высокого давления [10]. Исходная
навеска из высокочистых марганца (99.9 %), родия
(99.97 %) и кремния (99.999 %) помещалась в изоли-
рующий контейнер из монокристаллического NaCl,
после чего подвергалась одновременному действию
давления 8 ГПа и высокой температуры 1500–1700 К
в камере типа “Тороид”. Рентгеноструктурный ана-
лиз показал, что в области составов 0 ≤ x ≤ 0.9

образцы кристаллизуются в структуре B20 с посто-
янной решетки, увеличивающейся с ростом содер-
жания родия и, следовательно, в твердых раство-
рах замещения реализуется случай отрицательного
химического давления. Оценка в соответствии с за-
коном Вегарда показывает, что варьирование соста-
ва на ∆x = 0.1 изменяет постоянную решетки на
∆a = 0.019 Å. Однородность и стехиометрия образ-
цов контролировались методами сканирующей элек-
тронной микроскопии и рентгеновского микроанали-
за. Относительные отклонения состава от номиналь-
ной химической формулы Mn1−xRhxSi не превыша-
ли 1 % и, с этой точки зрения, состав образцов на-
ходился на том же уровне качества, что и в моно-
кристаллах системы Mn1−xFexSi, исследованных ра-
нее [6]. Более подробная информация о синтезе и
структуре образцов Mn1−xRhxSi в широком интерва-
ле концентраций родия является предметом отдель-
ного сообщения [11]. Магнитные свойства были ис-
следованы с помощью установки PPMS-9 (Quantum
Design). Измерялись полевые зависимости намагни-
ченности M(H,T ) в магнитном поле до 9 Тл в интер-
вале температур 2–300 K. Отметим, что исследование
синтезированных в условиях высокого давления об-
разцов Mn1−xRhxSi методом нейтронного рассеяния
показало полное подавление спиральной магнитной
структуры и скирмионной А-фазы уже в области со-
ставов x < 0.05 [11]. Таким образом, магнитные свой-
ства Mn1−xRhxSi в исследуемом диапазоне x ≥ 0.15

будут, главным образом, определяться ферромагнит-
ными взаимодействиями.

3. Особенности полевых зависимостей

намагниченности у образцов Mn1−xRhxSi.

Необычность магнитных свойств Mn1−xRhxSi состо-
ит в том, что в широком температурном диапазоне,
где изменение температуры превышает два порядка
величины, намагниченность M следует степенной
зависимости от магнитного поля H с показателем
степени, меньшим единицы:

M(H,T = const) = A(T ) ·H1−ξ(T ). (1)

Примеры экспериментальных зависимостей для об-
разцов с x = 0.15 и x = 0.8 и их аппроксима-
ции с помощью формулы (1) приведены на рис. 1, 2

Рис. 1. (Цветной онлайн) Полевые зависимости намаг-
ниченности M(H) (a) и данные M(H) в координатах
H/M = f(H) (b) для образца с x = 0.15. На панели
(b): точки – эксперимент, сплошная линия – аппрок-
симация с помощью формулы (2). У кривых показаны
рассчитанные значения ξ. Ошибка в определении вели-
чины показателя степени составляет 0.02. Магнитный
момент приведен в единицах магнетона Бора в расчете
на формульную единицу в элементарной ячейке

(панели a). Изотермы полевых зависимостей намаг-
ниченности удобно представить в виде

H/M = f(H) = Hξ(T )/A(T ) (2)

(см. рис. 1, 2, панели b). Использование координат
H/M = f(H) сразу делает очевидным отсутствие ли-
нейного по магнитному полю отклика, которое мож-
но описать с помощью магнитной восприимчивости,
M = χH , так как в этом случае отношение H/M в
пределе H → 0 должно выходить на конечное зна-
чение H/M = 1/χ. Такое поведение не соответству-
ет эксперименту, и в случае Mn1−xRhxSi отношение
H/M стремиться к нулю при H → 0 в соответствии
с формулой (2) (рис. 1, 2, панели b).

Аппроксимация зависимостей H/M = f(H) поз-
воляет найти показатель степени ξ и перестроить
экспериментальные данные в спрямляющих коорди-
натахH/M = f(Hξ). Из рис. 3 и 4 видно, что степен-
ная зависимость (2) хорошо описывает эксперимен-
тальную ситуацию, за исключением небольшой обла-
сти в окрестности начала координат (µ0H)ξ ≤ 0.3Tξ

у некоторых кривых, для которых на полевых зави-
симостях намагниченности наблюдается небольшой
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Рис. 2. (Цветной онлайн) Полевые зависимости намаг-
ниченности M(H) (a) и данные M(H) в координатах
H/M = f(H) (b) для образца с x = 0.8. На панели
(b): точки – эксперимент, сплошная линия – аппрок-
симация с помощью формулы (2). У кривых показаны
рассчитанные значения ξ. Ошибка в определении вели-
чины показателя степени составляет 0.015. Магнитный
момент приведен в единицах магнетона Бора в расчете
на формульную единицу в элементарной ячейке

Рис. 3. (Цветной онлайн) Полевые зависимости намаг-
ниченности для образца с x = 0.15, перестроенные в
спрямляющих координатах. Цифры у кривых обозна-
чают температуру в K

гистерезис. Интересно, что линейный участок кри-
вой H/M = f(Hξ) для образца x = 0.8 наблюда-
ется даже при T = 300K (рис. 4). Рассчитанные из
аппроксимации экспериментальных данных показа-

Рис. 4. (Цветной онлайн) Полевые зависимости намаг-
ниченности для образца с x = 0.8 перестроенные в
спрямляющих координатах. Цифры у кривых обозна-
чают температуру в K. Заштрихованная область в
окрестности начала координат соответствует магнит-
ному гистерезису в слабом магнитном поле

тели степени ξ(T ) для образцов с x = 0.15, x = 0.4

и x = 0.8 приведены на рис. 5. Эти же данные были
использованы для построения спрямляющих коорди-
нат на рис. 3 и 4.

Рис. 5. (Цветной онлайн) Температурные зависимости
показателя степени ξ у образцов Mn1−xRhxSi

4. Фаза Гриффитса, параметр порядка и

оценка температуры Кюри. Степенные зависи-
мости, аналогичные описанным выше, ранее неодно-
кратно наблюдались экспериментально в различных
неупорядоченных магнетиках, таких как Ni1−xVx

[12] и Mn1−xFexSi [13]. При этом показатель степе-
ни ξ лежит в пределах 0 < ξ < 1 и не являет-
ся универсальным [12, 13]. Сопоставление этих дан-
ных с теоретическими результатами [14] позволило
авторам [12, 13] связать степенные зависимости на-
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магниченности c образованием фазы Гриффитса, со-
стоящей из ФМ кластеров. В результате, наблюдае-
мые в широком температурном интервале степенные
зависимости намагниченности у Mn1−xRhxSi указы-
вают на их возможную связь с аномалиями гриф-
фитсовского типа. Природа беспорядка в магнитной
подсистеме у твердого раствора замещения в систе-
ме MnSi–RhSi также очевидна, аналогична случаю
Mn1−xFexSi [6, 7], и связана с замещением магнит-
ного иона марганца немагнитным ионом родия, что
также согласуется с интерпретацией особенностей
магнитных свойств этого материала в рамках суще-
ствующих представлений о фазе Гриффитса. Тем не
менее, в литературе под фазой Гриффитса в ФМ си-
стеме часто понимается и некоторая область темпе-
ратур в окрестности точки Кюри, где зависимость
χ(T ) имеет аномальный характер [15]. Поэтому во-
прос о применимости парадигмы фазы Гриффитса
для описания степенных зависимостей намагничен-
ности в неупорядоченном магнетике требует допол-
нительного обсуждения.

Прежде вего, следует отметить, что рассматри-
ваемые особенности магнитных свойств Mn1−xRhxSi
затрудняют корректное определение температуры
магнитного перехода. Во-первых, для гриффитсов-
ских систем в парамагнитной фазе затруднено точ-
ное определение TC путем экстраполяции темпера-
турной зависимости магнитной восприимчивости из
области высоких температур, поскольку эта зависи-
мость может заметно отличаться от закона Кюри–
Вейсса [15]. Во-вторых, существование степенных
зависимостей намагниченности от магнитного поля
в широком температурном интервале делает невоз-
можным использование уравнения состояния ферро-
магнетика, на котором основано применение коор-
динат Белова–Арротта [16] или Аррота–Ноакса [17]
для нахождения температурной зависимости спон-
танной намагниченности (параметра порядка) в маг-
нитоупорядоченной фазе по изотермам M(H). Дей-
ствительно, степенная полевая зависимость намагни-
ченности у стандартного ферромагнетика возникает
только в точке Кюри, и если равенство T = TC вы-

полняется, то M ∼ H
1

γ/β+1 [16, 17]. В теории Ландау
критические индексы составляют γ = 1 и β = 1/2,
что дает универсальный закон M(T = TC) ∼ H1/3.
Очевидно, что наблюдение не универсальных зави-
симостей типа (1) в широком температурном интер-
вале, где температура изменяется более чем на поря-
док, исключает стандартный анализ, основанный на
обычном уравнении состояния ФМ фазы.

В работе [12] было высказано предположение том,
что коэффициент A(T ) может играть роль парамет-

ра порядка для неупорядоченной гриффитсовской
системы, находящейся в ФМ состоянии. Однако, в
[12] эта идея не была подкреплена модельными рас-
четами или оценками. Вместе с тем, данное положе-
ние легко может получить дополнительное обоснова-
ние в рамках следующей простой модели.

В общем случае фаза Гриффитса, возникающая
в неупорядоченных магнетиках, представляет собой
кластерную фазу, причем магнитные свойства клас-
теров характеризуются дисперсией различных пара-
метров [18]. В такой системе магнитный переход мо-
жет быть как полностью подавлен (что соответствует
возникновению индуцированного беспорядком кван-
тового критического режима), так и происходить при
температуре, меньшей значения, соответствующего
полностью упорядоченному образцу [14, 18]. Следуя
терминологии, предложенной ранее в [12, 13] далее
мы будем использовать термин “фаза Гриффитса”
для обозначения кластерной фазы с магнитным бес-
порядком, находящейся не только в парамагнитном,
но и в ФМ состоянии.

Для описания намагниченности кластера M , вхо-
дящего состав магнитной фазы с беспорядком, внеш-
него магнитного поля H необходимо учитывать ло-
кальное поле Hl, создаваемое всеми магнитными
кластерами в системе [19, 20],

M =M0ϕ(B0(T ) · (H +Hl)), (3)

где функция ϕ(z) задает намагниченность кластера
и в общем случае имеет асимптотики ϕ(z) ≈ α ·z при
z → 0, ϕ(z) → 1 при z → ∞. Например в [19, 20]
были использованы аппроксимации ϕ(z) = tanh(z) и
ϕ(z) = L(z), соответствующие функции Бриллюэна
для спина S = 1/2 и функции Ланжевена. В формуле
(3) при описании парамагнитной фазы параметр M0

задает намагниченность насыщения, причем в этом
случае для описания магнитных свойств материа-
лов на основе MnSi можно использовать соотноше-
ние B0 = (µ∗H)/(kB(T − TC)), где µ∗ – эффективный
магнитный момент [21]. В неупорядоченном магне-
тике параметры M0, B0 и Hl являются случайными
величинами, и результирующий магнитный отклик
может быть получен путем усреднения соотношения
(3) с учетом соответствующих функций распределе-
ния [19].

Предположим, что распределение локальных по-
лей дается степенной функцией

w(Hl) =
1− ξ

2H1−ξ
m |Hl|ξ

, |Hl| ≤ Hm, ξ < 1, (4)
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удовлетворяющей условию нормировки

Hm
∫

−Hm

w(Hl)dHl = 1, (4a)

а дисперсией M0 и B0 можно пренебречь. Тогда
магнитный отклик кластерной системы представим
в виде

M =M0

Hm
∫

−Hm

w(Hl) · ϕ(B0 · (H +Hl))dHl. (5)

В случае, когда формула (5) используется для описа-
ния парамагнитной фазы, результат зависит от вы-
бранной модельной аппроксимации ϕ(z). Однако, ес-
ли использовать (5) для описания неупорядоченной
ФМ фазы можно положитьB0 → ∞ и, если дополни-
тельно пренебречь эффектами гистерезиса в слабом
магнитном полe, то ϕ(z) примет универсальный вид

ϕ(z) = sgn(z). (6)

В этом случае формулы (4)–(5) дадут степенную за-
висимость намагниченности

M =M0(H/Hm)1−ξ, (7)

аналогичную наблюдаемой в эксперименте у
Mn1−xRhxSi. Из сравнения с зависимостями (1)–(2)
следует, что показатель степени полевой зависимо-
сти намагниченности дает информацию о функции
распределения локальных полей, а коэффициент A

равен A =M0/H
1−ξ
m .

В кластерной ФМ фазе M0 задает спонтанную
намагниченность, то есть является параметром по-
рядка, зависящим от температуры по критическому
закону

M0 ∼ (TC − T )β (8)

с универсальным для данного состава критическим
индексом β. Пропорциональность A и M0 согласует-
ся с отмеченным выше предположением об экспери-
ментальном нахождении параметра порядка, сделан-
ным ранее в работе [12]. Однако в рассматриваемой
модели в температурную зависимость A(T ) может
вносить вклад комбинацияH1−ξ

m . Из рисунка 5 видно
что температурная зависимость показателя степени
ξ(T ) не имеет критического поведения, поэтому до-
полнительный вклад в критическую температурную
зависимость A(T ) может вносить только величина
Hm. Формально этот параметр вводится для того,
чтобы удовлетворить условию нормировки (4а), так

как соответствующий интеграл расходится на верх-
нем пределе и, в принципе, может не обладать зави-
симостью от температуры. Если же предположить
существенную температурную зависимость поля об-
резки, имеющую физический смысл, то необходимо
предположить, что величинаHm задает диапазон ак-
туальных локальных полей, в котором будет выпол-
няться степенная зависимость (7). Локальные поля,
в свою очередь, связаны с намагниченностью класте-
ров в фазе Гриффитса, которая убывает при T → TC
согласно формуле (8). В результате разброс локаль-
ных полей будет уменьшаться, а не увеличиваться.
Поэтому при приближении к температуре Кюри из
области существования ФМ фазы в рамках рассмат-
риваемой “физической” интерпретации параметр Hm

должен убывать, что должно приводить к росту ве-
личины A(T → TC). Такое поведение противоречит
эксперименту, поскольку с увеличением температу-
ры наклон прямых в координатахH/M = f(Hξ) уве-
личивается, что соответствует возрастанию A−1 и,
следовательно, уменьшению A (рис. 3, 4). Таким об-
разом, сопоставление предложенный модели с экспе-
риментом показывает, что основной вклад в темпе-
ратурную зависимость A(T ) вносит температурная
зависимость параметра порядка, а не Hm или ξ.

Данные M0(T ), полученные в предположении
M0(T ) ∼ A(T ) для образцов с x = 0.15, x = 0.4 и
x = 0.8 приведены на рис. 6 (основная панель). Ап-

Рис. 6. (Цветной онлайн) Параметр порядка в ФМ кла-
стерной фазе Гриффитса для образцов Mn1−xRhxSi
различного состава. На основной панели приведены
значения критического индекса β и температуры Кю-
ри. На вставке показан низкотемпературный вклад.
Подробности в тексте

проксимация с помощью формулы (8) в диапазоне
T > 100K позволила оценить температуру Кюри и
значения критического индекса (сплошные линии на
рис. 6). Найдено, что показатель степени β увеличи-
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вается с ростом x от β = 0.33 ± 0.01 для состава
с x = 0.15 до β = 0.48 ± 0.01 и β = 0.80 ± 0.03

для составов с x = 0.4 и x = 0.8 соответственно.
Температура Кюри также увеличивается при увели-
чении содержания родия в твердом растворе и мо-
жет быть оценена как TC(x = 0.15) = 244 ± 4K,
TC(x = 0.4) = 299 ± 5K и TC(x = 0.15) = 334 ± 6K
(рис. 6). Таким образом, уже при x = 0.15 темпера-
тура Кюри увеличивается в 8.4 раза, а для составов
с x = 0.4 и x = 0.8 переход в ФМ состояние проис-
ходит при комнатной температуре или при темпера-
туре, превышающей комнатную. Этот результат на-
глядно иллюстрирует рис. 7, на котором приведена
фотография образца Mn1−xRhxSi с x = 0.8 удержи-
ваемого постоянным магнитом при комнатной тем-
пературе.

Рис. 7. (Цветной онлайн) Образец Mn0.2Rh0.8Si, удер-
живаемый постоянным магнитом при комнатной тем-
пературе. (a) – Общий вид магнита с образцом (образец
отмечен красным кружком). (b) – увеличенное изобра-
жение

Интересно, что для T < 100K на кривых M0(T )

возникает новый участок низкотемпературного ро-
ста, наиболее выраженный для образцов с x = 0.4

и x = 0.8 (рис. 6). Выделить эту особенность можно
путем экстраполяции зависимости (8) из области вы-
соких температур, с последующим вычитанием по-
лученной таким образом базовой линии (пунктир на
рис. 6, основная панель). Результат такой обработ-
ки экспериментальных данных показан на вставке на
рис. 6. Видно, что для x = 0.15 низкотемпературная
особенность возникает при ∼ 22 K, а для x = 0.4 и
x = 0.8 при ∼ 90–100 K. Нельзя исключить, что вве-
дение родия в матрицу MnSi приводит к образова-
нию нескольких ФМ фаз. Природа и характеристи-
ки низкотемпературной ФМ фазы у Mn1−xRhxSi яв-
ляются предметом самостоятельного исследования,
результаты которого будут опубликованы отдельно.

5. Обсуждение результатов. Возможные

механизмы увеличения температуры Кюри у

Mn1−xRhxSi. Наблюдаемый эффект роста TC яв-
ляется весьма необычным и требует обсуждения
возможных механизмов ФМ взаимодействий, ответ-
ственных за это явление. Прежде всего, оценим воз-
можное влияние отрицательного химического давле-
ния. Само по себе давление, как положительное, так
и отрицательное, не вносит дополнительного маг-
нитного беспорядка и оказывает влияние через раз-
личные микроскопические параметры, определяю-
щие магнитное состояние. В случае MnSi внешнее
(положительное) давление подавляет магнитный пе-
реход и индуцирует появление квантовой критиче-
ской точки, не связанное с гриффитсовским сцена-
рием. Однако на практике, отрицательное давление
имеет химическую природу и реализуется путем вве-
дения различных примесей, увеличивающих посто-
янную решетки. При этом одновременно в систе-
му вносится структурный и магнитный беспорядок.
При таком отрицательном химическом давлении бу-
дут одновременно действовать как фактор роста TC
(поле деформаций, увеличивающих постоянную ре-
шетки), так и гриффитсовский механизм уменьше-
ния температуры магнитного перехода. Оценим вна-
чале возможный эффект влияния отрицательного
давления у Mn1−xRhxSi без учета беспорядка. Экс-
траполируя результаты работы [9] с учетом струк-
турных данных, полученных в настоящем исследо-
вании несложно получить оценку температур Кюри
∼ 67 K, ∼ 106 K и ∼ 182 K для образцов с x = 0.15,
x = 0.4 и x = 0.8 соответственно. Поскольку в этом
случае была использованы результаты [9] для соста-
вов с низкой концентрацией легирующих элементов,
то найденные величины TC следует рассматривать
как оценку сверху, так как магнитный беспорядок,
ведущий к образованию фазы Гриффитса, в общем
случае уменьшает температуру Кюри. Таким обра-
зом, эффект отрицательного химического давления,
хотя и “работает в правильном направлении”, не мо-
жет объяснить наблюдаемые значения TC , поскольку
предсказывает значения, которые, по крайней мере,
оказываются в 3.6–1.8 раза меньшими эксперимен-
тальных величин (рис. 6).

В настоящее время существует несколько мо-
делей магнетизма MnSi. Исторически первой была
спин-флуктуационная теория Мории, которая отно-
сит MnSi к классу слабых зонных магнетиков, у ко-
торых спиновая плотность распределена по всей эле-
ментарной ячейке [22]. В этом случае выражение для
TC , найденное в [22], приводит к следующей оцен-
ке для температуры ФМ перехода: TC(x)/TC(0) ∼
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∼
(

(M(x, T →)gF (0))/(M(0mT → 0)gF (x))
)3/4

, где
M(x, T → 0) соответствует намагниченности насы-
щения в расчете на формульную единицу в элемен-
тарной ячейке при нулевой температуре в ФМ состо-
янии и gF (x) – плотность состояний на уровне Фер-
ми. Из литературных данных известно для диапа-
зона µ0H < 9Tл, что у чистого MnSi отсутствует
низкотемпературное насыщение магнитного момен-
та [6, 8, 13] и общепринятой является оценка M(x =

= 0, T → 0) ∼ 0.3µB. Из рисунков 1, 2 видно, что
этот параметр у Mn1−xRhxSi не может радикально
отличаться от исходного для моносилицида марган-
ца и, следовательно, M(x, T → 0)/M(0, T → 0) ∼ 1.
Таким образом, в рамках классической теории Мо-
рии основной эффект должен быть связан с измене-
нием плотности состояний. Тогда для TC(x)/TC(0) ∼
∼ 8.4−11.5 фактор перенормировки плотности состо-
яний будет gF (x)/gF (0) ∼ 0.04−0.06, т.е. этот пара-
метр должен измениться в 17–25 раз в исследуемом
диапазоне концентраций родия. Такая возможность
представляется нам маловероятной. Тем не менее,
следует обратить внимание на то, что максимальное
увеличение TC наблюдается в образце с 20 % магнит-
ного иона Mn. При этом полная намагниченность на
элементарную ячейку сохраняется на том же уровне,
что и исходном MnSi. Поэтому в рамках зонного ме-
ханизма может возникать перераспределение элек-
тронной плотности, приводящее, например, к увели-
чению амплитуды магнитного момента в окрестно-
сти иона марганца, что в принципе, может привести
к росту температуры Кюри. Однако у Mn0.2Rh0.8Si
расстояние между такими магнитными центрами с
увеличенным магнитным моментом будет больше по
сравнению c чистым MnSi и, следовательно, это об-
стоятельство будет работать против увеличения тем-
пературы магнитного перехода. В результате, зон-
ный механизм не может быть окончательно исклю-
чен из рассмотрения, но корректная оценка измене-
ния температуры Кюри в этом случае требует про-
ведения дополнительных исследований.

Теория зонного магнетизма сталкивается с прин-
ципиальными трудностями при количественном
описании полевых зависимостей намагниченности
у MnSi. Для разрешения этой проблемы была
предложена спин-поляронная модель [23]. Согласно
этой модели магнитный момент у MnSi локализован
на ионах марганца, что находится в согласии с
результатами LDA расчетов. Зонные электроны
экранируют локализованные магнитные моменты
(ЛММ) марганца и образуют квазисвязанные со-
стояния из нескольких ЛММ и электронов, спины
которых ориентированы противоположно. В та-

кой модели объясняются как особенности полевой
зависимости намагниченности, так и редукция
момента насыщения до экспериментальных значе-
ний ∼ 0.3–0.4µB/Mn. Спиновые флуктуации также
получают естественное объяснение, поскольку их
можно связать с электронными переходами меж-
ду квазисвязанными состояниями и состояниями
зонного континуума. Основное ФМ взаимодействие
является следствием РККИ обмена [24] c величиной
J порядка нескольких миллиэлектронвольт. Таким
образом, для увеличения TC до наблюдаемых у
Mn1−xRhxSi значений величина обменной энергии
должна увеличится не менее чем в 8–10 раз, что
также представляется весьма нетривиальным.

Не исключено, что наиболее подходящими для
описания механизма усиления ферромагнетизма мо-
гут оказаться результаты, полученные в [25, 26]. В
этих работах рассматривалась полупроводниковая
матрица кремния, содержащая включения интерме-
таллидов MnxSiy, которые описываются как нано-
метровые кластеры с сильными спиновыми флукту-
ациями. Дополнительно постулируется наличие де-
фектов, локализующих магнитные возбуждения. В
результате исходная температура Кюри, определяе-
мая РККИ взаимодействием TCRKKI ∼ 10K пере-
нормируется спиновыми флуктуациями, и результи-
рующая температура Кюри TC может быть оценена
как TC ∼

√
TRKKY ·W , где W ∼ 104 K – ширина

электронной зоны [25, 26]. Легко видеть, что такой
механизм дает TC ∼ 300K, что хорошо согласовыва-
лось с экспериментальными данными для кремние-
вой матрицы [26]. Интересно, что в недавней рабо-
те [27] была исследована матрица германия с внед-
ренным марганцем. Оказалось, что в области соста-
вов с 10 % марганца величина TC составляла ∼ 300 K,
что хорошо согласуется как с теоретическими оцен-
ками, так и с экспериментальными результатами, по-
лученными ранее для кремниевой матрицы. Кроме
того, следует упомянуть результаты исследования
[28], согласно которым введение марганца в матрицу
GaSb приводит к появлению магнитных кластеров с
TC ∼ 280K. В результате, мы предполагаем, что дан-
ный спин-флуктуационный механизм усиления маг-
нитного обмена может оказаться наиболее перспек-
тивным для описания магнетизма у Mn1−xRhxSi, по-
скольку не имеет ограничений на рост TC присущих
другим известным механизмам магнитного обмена и
может легко преодолеть эффект уменьшения тем-
пературы Кюри, связанной с магнитным беспоряд-
ком и образованием фазы Гриффитса. Тем не ме-
нее, для решения вопроса о применимости модели,
предложенной в [25, 26], для описания магнетизма
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Mn1−xRhxSi требуется проведение дополнительных
теоретических исследований.

6. Заключение. В настоящей работе мы показа-

ли, что введение родия в моносилицид марганца при-

водит в образованию нецентросимметричного твер-

дого раствора замещения Mn1−xRhxSi, характеризу-

ющегося сильным ростом TC по отношению к чисто-

му MnSi. В диапазоне концентраций x = 0.15−0.8

температура Кюри увеличивается в 8.4–11.5 раз и

для x = 0.8 превышает комнатную, достигая зна-

чения ∼ 334 K. Анализ экспериментальных данных

показывает, что в генезисе аномальных магнитных

свойств Mn1−xRhxSi важную роль играют эффек-

ты магнитного беспорядка, приводящие к возникно-

вению ферромагнитной кластерной фазы Гриффит-

са. Вероятно, что аномальное увеличение TC может

быть связано со спин-флуктуационным механизмом

усиления РККИ взаимодействия.
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