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В работе представлена теория долинного эффекта Холла в гибридной системе “электронный газ –
бозе-конденсат дипольных экситонов”, сформированной на базе пространственно разнесенных монослоев
дихалькогенидов переходных металлов. На основе анализа асимметричного (skew) рассеяния электро-
нов на элементарных возбуждениях экситонного бозе-конденсата исследованы зависимости поперечного
электрического тока от геометрических размеров структуры, температуры и концентрации электронно-
го газа.

DOI: 10.31857/S0370274X25010178, EDN: IAGPFO

В современной физике двумерных систем целый
класс транспортных явлений объединяют единым
термином: аномальный эффект Холла (АЭХ). Под
этим термином подразумевается возбуждение попе-
речного отклика системы относительно внешней воз-
буждающей силы в отсутствие внешнего магнитно-
го поля, то есть без прямого воздействия силы Ло-
ренца [1–5]. Как правило, микроскопические тео-
рии АЭХ основываются на исследованиях тополо-
гической структуры энергетических зон материала
(anomalous velocity) и различных механизмов при-
месного рассеяния (skew scattering и side jump), как
это сделано, например, для графена [6]. Отметим,
что фононные механизмы возникновения АЭХ в раз-
личных системах также исследуются [7, 8].

Объектом изучения АЭХ в настоящей работе яв-
ляются двумерные наноструктуры на базе дихаль-
когенидов переходных металлов (ДПМ), в которых
зонная структура характеризуется двумя долинами,
K+ и K−, связанными друг с другом операцией об-
ращения времени. Соответственно, АЭХ в данных
материалах называется долинным эффектом Холла
(ДЭХ) [9], и к настоящему моменту теория данно-
го эффекта хорошо развита [10]. Оригинальным на-
правлением исследований АЭХ в изначально немаг-
нитных материалах является создание различных
гетероструктур, например, с использованием фер-
ромагнитных соединений [11, 12]. Принципиально
иной тип структур на базе ДПМ представляют собой
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Рис. 1. (Цветной онлайн) Схематичное изображение ис-
следуемой двумерной электрон-экситонной системы; l –
расстояние между электронным и экситонным слоями,
d – размер дипольных экситонов

разнесенные слои электронного и экситонного газов
(рис. 1). Так как экситоны обладают целочисленным
спином, при достаточно низкой температуре экси-
тонный газ претерпевает переход в сверхтекучее со-
стояние [13]. Несмотря на электрическую нейтраль-
ность экситонов, экситонный бозе-конденсат прояв-
ляет себя в транспортных [14] и магнитотранспорт-
ных [15] эффектах через электрон-экситонное куло-
новское взаимодействие. Ранее было показано [16],
что взаимодействие электронов с таким экситонным
бозе-конденсатом открывает дополнительный канал
рассеяния, который при определенных параметрах
должен давать основной вклад в удельное сопротив-
ление электронного слоя. Настоящая работа посвя-
щена исследованию роли асимметричного (skew) рас-
сеяния электронов на элементарных возбуждениях
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экситонного бозе-конденсата в формировании ДЭХ
в гибридной электрон-экситонной системе.

Начнем с определения поперечной плотности то-
ка электронов:

jH = e0
∑

p

v⊥p δnp, (1)

где δnp – неравновесная часть функции распределе-
ния электронов, v⊥p – проекция скорости электронов
на направление, перпендикулярное вектору напря-
женности электрического поля E, e0 – заряд элек-
трона. Проекция скорости v⊥p меняет знак при зер-
кальном отражении относительно вектора E, поэто-
му вклад в поперечный отклик дает лишь асим-
метричная поправка δnp

(as), также не обладающая
указанной симметрией. Для нахождения δnp

(as) вос-
пользуемся кинетическим уравнением:

e0E∂pnp +Q{np} = 0, (2)

где np – неравновесная функция электронов в зоне
проводимости, Q{np} – интеграл столкновений элек-
тронов с примесями и экситонами. Далее мы по-
лагаем, что конденсация экситонов происходит при
столь низкой температуре, что электронный газ яв-
ляется вырожденным. Из уравнения (2) следует, что
единственным источником асимметрии функции рас-
пределения является интеграл столкновений, поэто-
му явно разделим его на два слагаемых, отвечаю-
щих за симметричное и асимметричное рассеяние:
Q{np} = Q(s){np} + Q(as){np}. При низких темпе-
ратурах основной механизм релаксации в системе –
рассеяние на статических несовершенствах кристал-
лической решетки. В низшем порядке теории возму-
щений в борновском приближении такое рассеяние
дает вклад только в Q(s), поэтому естественно счи-
тать Q(s) ≫ Q(as) и решать уравнение (2) методом
последовательных приближений, что дает:

δn(s)
p = −τe0Evp

∂n
(0)
p

∂εp
, (3)

δnp
(as) = −τQ(as){δn(s)

p }, (4)

где n
(0)
p – равновесная функция распределения элек-

тронного газа, τ = (mu20ni)
−1 – время релаксации на

короткодействующих примесях, m и εp – эффектив-
ная масса и энергетическая дисперсия электронов в
зоне проводимости соответственно, u0 – потенциал
примесей, а ni – их концентрация.

При наличии в системе нескольких механизмов
рассеяния необходимо учитывать вклад каждого из
них в выражении (4). В заключительной части ра-
боты приведены численные оценки эффективности

электрон- экситонного взаимодействия в сравнении
с асимметричным рассеянием электронов на приме-
сях и фононах. Перейдем к вычислению асиммет-
ричной части интеграла столкновений, обусловлен-
ной электрон-экситонным взаимодействием. Полу-
чить его явный вид можно различными способами.
Первый, наиболее распространенный, сводится к вы-
числению квантовомеханической вероятности пере-
хода между различными состояниями (что лежит в
основе анализа асимметричного рассеяния электро-
нов на примесях и фононах в работе [10]). В области
низких температур числа заполнения колебательных
степеней свободы экситонного бозе-конденсата нель-
зя считать большими величинами по сравнению с
единицей, поэтому для расчета вероятности перехо-
дов необходим аккуратный подход, учитывающий за-
селенности всех промежуточных электронных состо-
яний [17]. Другой способ, использованный в данной
работе, основан на аппарате диаграммной техники
Келдыша [18] и заключается в переходе от квантово-
го кинетического уравнения к квазиклассическому в
пределе медленно меняющихся в пространстве и вре-
мени полей [19, 20]. Начнем его изложение с краткого
описания электронной подсистемы.

Зонная структура ДПМ состоит из двух до-
лин, расположенных вблизи K- точек зоны Бриллю-
эна (правильного шестиугольника) [21]. Вблизи точ-
ки K+ воспользуемся модельным гамильтонианом
вида [22]:

Ĥ =

∫

drΨ†(x)ĥΨ(x), (5)

ĥ =

(

e0ϕ γp̂−

γp̂+ −Eg + e0ϕ

)

, (6)

где Ψ(x) = (ψc(x), ψv(x))
T – полевой оператор элек-

тронного газа, c и v – индексы энергетических зон,
(x) = (t, r), γ = pcv/m0, pcv – межзонный матрич-
ный элемент оператора импульса, m0 – масса сво-
бодного электрона, p̂ = −i∂r – оператор импульса,
Eg – ширина запрещенной зоны и ~ = kB = 1. Так
как в данной работе нас интересует отклик на по-
стоянное электрическое поле, в гамильтониане (6)
опущен векторный потенциал и оставлен только ска-
лярный, ϕ(r). Первым шагом вывода кинетического
уравнения является нахождение явного вида функ-
ций Грина электронного газа. Начнем с запаздыва-
ющей функции Грина ĜR

0 свободных электронов:

ĜR
0 (x1, x2) = −iθ(t1 − t2)〈{Ψ(x1) ⊗, Ψ+(x2)}〉, (7)

где {...} – антикоммутатор двух операторов, а ⊗ –
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прямое произведение в пространстве индексов зон.
Данная функция подчиняется уравнению:

Ĝ0
−1

(x1)Ĝ
R
0 (x1, x2) = τ̂0δ(x1 − x2), (8)

где Ĝ0
−1

(x1) = i∂t − ĥ(r) и τ̂0 – единичная матри-
ца. Переходя в уравнении (8) к суммарным и раз-
ностным переменным, (x1, x2) → (x;p, ω) (где x =

= (x1+x2)/2, а (p, ω) – импульс и частота, сопряжен-
ные с относительной переменной (x1 − x2)), и прене-
брегая в первом приближении всеми пространствен-
ными и временными производными по суммарным
аргументам, получаем:

ĜR
0;p,ω(x) = ĥ(c)p a(c)Rp,ω (x) + {(c) → (v)}, (9)

ĥ(c)p ≡ ĥp ≈
(

1 γp−/Eg

γp+/Eg O(γ2p2/E2
g)

)

,

a(c)Rp,ω (x) ≡ aRp,ω(x) = (ω + iδ − e0ϕ− εp)
−1,

где εp = p2/2m – энергия электрона вблизи дна зо-
ны проводимости, m = Eg/2γ

2 – его эффективная
масса. При выводе выражения (9) удержаны глав-
ные члены разложения по степеням γp/Eg, так как
сам модельный гамильтониан (6) справедлив в при-
ближении γp/Eg ≪ 1. В условиях рассматриваемой
задачи ширина запрещенной зоны заведомо превы-
шает энергию любых элементарных возбуждений, в
том числе экситонного конденсата. Поэтому вклад
межзонных переходов мал по сравнению с внутри-
зонными. Таким образом, часть функции Грина, со-
ответствующая валентной зоне, не играет роли в изу-
чаемом эффекте и в формуле (9) опущена. Для по-
следующего расчета так же необходимы корреляци-
онные функции, характеризующие числа заполнения
электронных состояний:

Ĝ
≶
0;p,ω(x) = ĥpa

≶
p,ω(x), (10)

a<p,ω(x) = 2πinp(x)δ(ω − e0ϕ− εp),

a>p,ω(x) = −2πi(1− np(x))δ(ω − e0ϕ− εp).

Физическая картина, заключенная в корреляцион-
ных функциях (10), соответствует квазичастично-
му приближению: дельта-функция опредедяет спек-
тральную плотность состояний, сдвинутых на вели-
чину потенциальной энергии электрона в электриче-
ском поле, e0ϕ, а распределение частиц по состояни-
ям, в свою очередь, является медленной функцией
пространственных координат и времени.

Полная корреляционная функция электронного
газа учитывает взаимодействие электронов с окру-
жением и подчиняется следующему уравнению:

Ĝ0
−1
Ĝ<(x1, x2) =

∫

dx′
[

Σ̂<(x1, x
′)ĜA(x′, x2)+

Σ̂R(x1, x
′)Ĝ<(x′, x2),

]

(11)

где символом Σ обозначена собственно энергетиче-
ская часть электронных функций Грина (при этом
уже учтен дополнительный минус, возникающий для
вершин с противоположных ветвей контура Келды-
ша, Σ< = −Σ−+, [18]). Уравнение (11) является кван-
товым и должно быть дополнено уравнениями на
опережающую и запаздывающую функции Грина,
что делает систему уравнений замкнутой. На прак-
тике приходится применять те или иные упроще-
ния. Наиболее простой подход, продемонстрирован-
ный еще в основополагающей работе Келдыша [23]
и приводящий к кинетическому уравнению Больц-
мана, заключается в градиентом разложении правой
части уравнения (11) и использовании равновесных
функций (9) и (10) в качестве анзаца. В случае од-
нозонного спектра заключительный шаг вывода ки-
нетического уравнения состоит в вычитании из (11)
сопряженного ему уравнения. Прямой расчет пока-
зывает, что обобщение на случай двухзонной модели
сводится к взятию следа по индексам долин:

− 1

2π

∞
∫

0

d(ω − eϕ)Sp
[

Ĝ0
−1
Ĝ< − Ĝ<Ĝ0

†−1
]

=

[

∂t + F∂p + vp∂r

]

np(x), (12)

где F = ∂rεp = e0E – сила, действующая на элек-
трон со стороны электрического поля, а vp = ∂pεp –
скорость движения электронов с импульсом p. Отме-
тим, что, во-первых, выражение (12) остается спра-
ведливым и для прочих типов энергетического спек-
тра электронов, например, получаемых путем точ-
ной диагонализации гамильтониана (6). Во-вторых,
учет векторного потенциала электромагнитного по-
ля, A(x), осуществляется обычным образом: εp →
εp−eA. После получения корректного выражения для
полевых членов кинетического уравнения Больцма-
на автоматически записывается и интеграл столкно-
вений:

Q{np} =
1

2π

∞
∫

0

d(ω − e0ϕ)Sp
[

Σ̂>
p,ω(x)Ĝ

<
p,ω(x)−

Σ̂<
p,ω(x)Ĝ

>
p,ω(x)

]

. (13)

В рассматриваемой задаче явный вид собствен-
но энергетических частей, Σ, задается оператором
взаимодействия электронов с экситонами – кулонов-
ским электрон-дипольным отталкиванием или при-
тяжением (в зависимости от ориентации экситонов).
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Энергия этого взаимодействия записывается в виде
оператора, V̂ =

∫

drdRg(r − R)n̂(r)N̂ (R), где n̂ и
N̂ – операторы плотности электронного и экситон-
ного газов. При понижении температуры системы
ниже критического значения макроскопически боль-
шое число экситонов переходит в основное энерге-
тическое состояние с нулевым импульсом. В рамках
модели слабо неидеального бозе-газа в соответству-
ющем полевом операторе можно явно выделить вол-
новую функцию конденсата [24]: Φ̂(y) =

√
nc + φ̂(y),

где (y) = (t,R), nc – плотность конденсата, а поле-
вой оператор φ̂(y) описывает его коллективные воз-
буждения. Используя определение оператора плот-
ности, N̂(y) = Φ̂†(y)Φ̂(y), удобно разделить оператор
электрон-экситонного взаимодействия на две части:

V̂1 =
√
nc

∫

drdR(φ̂†(y) + φ̂(y))Ψ̂†(x)ĝ(r−R)Ψ̂(x),

(14)

V̂2 =

∫

drdRφ̂†(y)φ̂(y)Ψ̂†(x)ĝ(r−R)Ψ̂(x), (15)

где ĝ(r) = τ0g(r), g(r) – потенциал электрон-
экситонного взаимодействия, фурье-образ которого
имеет вид: g(q) = e20(1 − e−qd)e−ql/2ǫq, ǫ – диэлек-
трическая проницаемость среды между квантовыми
ямами, d – плечо экситона, l – расстояние между
электронным и экситонным газами. В данной зада-
че мы считаем экситоны жесткими диполями, поэто-
му расстояние до электронного слоя предполагается
заметно превышающим размер диполя, d≪ l. Соот-
ветственно, фурье-образ потенциала взаимодействия
принимает вид:

g(q) ≈ e20de
−ql/2ǫ. (16)

Смысл разделения оператора электрон-экситонного
взаимодействия на два слагаемых следует из опре-
деления полевого оператора φ̂q: φ̂q = ũqb̂q + ṽqb̂

†
−q.

Здесь операторы рождения b̂† и уничтожения b̂

описывают испускание и поглощение квантов соб-
ственных мод конденсата – боголонов. Таким обра-
зом, на языке диаграмм оператор V̂1 соответствует
вершине с одной исходящей (входящей) линией бого-
лона, а V̂2 – с двумя (рис. 2). Дисперсия собственных
мод конденсата, ωq = sq

√

1 + q2ξ2, является линей-
ной в длинноволновом пределе qξ ≪ 1 (где параметр
размерности длины ξ = 1/2Ms обратно пропорцио-
нален скорости звука в конденсате, s =

√

e20dnc/ǫM ,
a M – эффективная масса экситона). Характерный
максимальный импульс боголонов в рассматривае-
мой задаче ограничен потенциалом gq: qmax ≃ 1/l.
Приведенная ниже оценка скорости s показывает,

Рис. 2. (Цветной онлайн) Графическое изображе-
ние операторов электрон-экситонного взаимодействия:
(a) – V̂1 и (b) – V̂2. Черные сплошные линии обозна-
чают электронные полевые операторы, Ψ̂ и Ψ̂†, крас-
ные штриховые линии – полевые операторы надкон-
денсатных возбуждений, φ̂ и φ̂†, а голубые пунктирные
линии соответствуют частицам в основном состоянии
бозе-конденсата и равны

√
nc

что для экспериментально достижимых параметров
выполняется условие ξ/l ≪ 1, поэтому мы будем по-
лагать спектр боголонов линейным ωq = sq, а для
амплитуд ũq и ṽq будем использовать их длинновол-
новое разложение [25]:

ũq =

√

Ms2

2ωq

+
1

2

√

ωq

2Ms2
, (17)

ṽq = −
√

Ms2

2ωq

+
1

2

√

ωq

2Ms2
. (18)

Диаграммы низшего порядка, дающие вклад в
поперечный отклик, приведены на рис. 3. Каждая
черная сплошная линия соответствует матричным
функциям Грина электронов (9) и (10). Красные
пунктирные линии обозначают функции Грина бого-
лонов, построенных из различных комбинаций опе-
раторов φ† и φ (см. дополнительные материалы).
Топологически эквивалентные диаграммы лежат в
основе теории фононного механизма фотогальвани-
ческого эффекта в пьезоэлектриках [26]. В рамках
данной теории показано, что необходимым услови-
ем асимметричного рассеяния электронов на фоно-
нах является ангармонизм фононной подсистемы,
источниками которого могут выступать двухфонон-
ные процессы или фонон-фононное взаимодействие.
В изучаемой системе аналогом фонон-фононного
взаимодействия выступает трехбоголонная верши-
на (рис. 3d). Соответствующая диаграмма Σ(d) опре-
делятся следующим порядком теории возмущений
по сравнению с Σ(a,b,c). Трехбоголонное взаимодей-
ствие (вершина с крестом на рис. 3d) играет клю-
чевую роль в процессах распада квазичастиц бозе-
конденсата [24]. При этом данные процессы имеют
пороговый характер в зависимости от энергии ква-
зичастиц: существуют пороговая энергия ωc, отде-
ляющая область состояний ω < ωc, для которых
законы сохранения энергии и импульса исключают
возможность распада. Пространственное разделение
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Рис. 3. (Цветной онлайн) Структура собственно энерге-
тических частей Σ, определяющих асимметричное рас-
сеяние электронов на боголонах. Черные сплошные и
красные пунктирные линии соответствуют функциям
Грина электронов и боголонов соответственно, пустые
и закрашенные круги обозначают операторы электрон-
экситонного взаимодействия (14) и (15), а круг с пере-
крестием обозначает межбоголонное взаимодействие

электронного и экситонного газов в гибридной на-
ноструктуре ограничивает максимальную величину
передаваемого импульса между электронной и экси-
тонной подсистемами (и, соответственно, характер-
ную энергию боголонов), что позволяет нам стро-
ить теорию, используя длинноволновое приближение
для дисперсии и амплитуд собственных мод бозе-
конденсата. Оставаясь в рамках данного приближе-
ния, естественно ожидать, что энергии боголонов бу-
дет недостаточно для эффективного включения ме-
ханизма рассеяния, сопровождаемого распадом бого-
лонов. На этом основании вклад собственно энерге-
тической части Σ(d) в данной работе не рассматри-
вается.

Интегрирование по всем промежуточным пере-
менным приводит к достаточно громоздкому выра-
жению для интеграла столкновений Q(as){np}, ко-
торое приведено дополнительных материалах. Отме-
тим, что неприводимые части Σ(a), Σ(b) и Σ(c) могут
значительно различаться по абсолютной величине.

В частности, мы будем анализировать случаи, когда
скорость звука в конденсате s не превосходит суще-
ственно фермиевскую скорость вырожденного элек-
тронного газа vF . В рамках принятого длинноволно-
вого приближения, ξ/l ≪ 1, это означает, что длина
волны де Бройля электронов мала по сравнению с
расстоянием до экситонного конденсата, т.е. pF l ≫ 1.
В этом случае диаграмма рис. 3a является лидирую-
щей Σ(a)/Σ(b,c) ∼ pF l.

Асимметричная часть интеграла столкновений
Q(as){np} содержит в себе два типа функций с экс-
поненциальным поведением: уже упомянутый потен-
циал электрон-экситонного взаимодействия gq и рас-
пределение Бозе–Эйнштейна для собственных мод
конденсатаNq = (eωq/T−1)−1. В соответствии с этим
рассмотрим две предельных ситуации, в которых вид
интеграла столкновений значительно упрощается.

Тепловой режим: T ≫ s/l. В данном режиме
главный вклад в интеграл столкновений дают им-
пульсы, ограниченные обратным расстоянием между
электронным и экситонным газами, q1, q2 . 1/l, по-
этому колебания плотности конденсата можно счи-
тать классическими: Nq ≈ T/ωq ≫ 1. Интеграл
столкновений при этом становится линейным по
функции распределения электронного газа:

Q(as){δn(s)
p } =

γ2ncT
2

2(2π)2E2
g

∑

η1,2=±1

η1η2

∫

dq1dq2gq1gq1−q2gq2(p× q1 + q2 × p)zδn
(s)
p+q1

δ(εp − εp+q1 + η1ωq1)δ(εp − εp+q2 + η2ωq2)

ωq1ωq2

, (19)

где (...)z означает проекцию на ось z, перпендику-
лярную плоскости слоев. В отличие от рассеяния на
фононах [10] в данном случае нельзя считать про-
цесс упругим, так как, во-первых, на данном шаге мы
не предполагаем скорость звука в конденсате малой
по сравнению с фермиевской, а во-вторых, в рамках
длинноволнового приближения ωq ≫ εq. Пренебре-
гая εq в аргументах дельта-функций, после интегри-
рования по углам получаем:

Q(as){δn(s)
p } = −2γ2ncT

2τmF sinα

(2π)2E2
gs

2p

θ

(

εp − ms2

2

)

δ(εp − εF )
∑

η=±1

η

∫

dq1dq2
q1 + ηq2

q2
[

g

(
√

(q1 + ηq2)2 − 2ηq1q2
ms2

εp

)

− g(|q1 + ηq2|)
]

,

(20)
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где α – полярный угол импульса p, отсчитываемый
от направления вектора F. Как следует из (20), учет
энергии элементарных возбуждений бозе-конденсата
приводит к пороговой зависимости интеграла столк-
новений от энергии рассеиваемого электрона. Рас-
смотрим два предельных случая, для которых удает-
ся провести интегрирование до конца. Вдали от по-
рога, εF ≫ ms2/2, характер рассеяния электронов
на боголонах квазиупругий (elastic) и в окончатель-
ный ответ для плотности поперечного тока скорость
боголонов не входит:

j
(e)
H = 2e20mnc

( g0
2π~

)3
(

τγkBT

2lvFEg~

)2

E, (21)

где g0 = e20d/2ǫ ~. Вблизи порога, εF ≈ ms2/2, рассе-
яние неупругое (inelastic), и скорость боголонов сме-
няет фермиевскую:

j
(i)
H = 3e20mnc

( g0
2π~

)3
(

τγkBT

2lsEg~

)2

E. (22)

В обоих предельных случаях ток ДЭХ прямо про-
порционален квадрату температуры jH ∼ (kBT )

2,
что обусловлено двухбоголонным процессом асим-
метричного рассеяния, а также убывает как квад-
рат расстояния от электронного газа до экситонного,
jH ∼ l−2.

Квантовый режим: T ≪ s/l. В обратном пре-
дельном случае характер электрон-экситонного вза-
имодействия становится контактным, gq ≈ g0, что
значительно упрощает вычисления. При этом чис-
ла заполнения собственных мод бозе-конденсата уже
нельзя считать сильно превышающими единицу во
всем диапазоне интегрирования. Конкретнее, в инте-
грале столкновений после раскрытия скобок в про-
изведениях типа (Nq1 + 1)(Nq2 + 1), (Nq1 + 1)Nq2 и
т.п. и перегруппировки слагаемых получится три ти-
па выражений, включающих множители ∼ Nq1Nq2 ,
Nq1 и 1. В последнем случае вклад в интеграл, не
содержащий в себе N и формально соответствую-
щий пределу T → 0, тождественно обращается в
ноль (в том числе и для несимметричных диаграмм
Σ(b)). Этот результат легко понять исходя из физи-
ческих соображений: в отсутствие колебаний конден-
сата единственный возможный механизм рассеяния
электрона сопровождается испусканием боголонов,
но в силу принципа Паули такие процессы запреще-
ны. Из двух оставшихся слагаемых квадратичный по
N вклад оказывается малым по сравнению с линей-
ным: вблизи порога по параметру T l/s≪ 1, а вдали –
T ls/v2F ≪ 1. В результате перечисленных упрощений
интеграл столкновений принимает вид:

Q(as){np} =
γ2ncg

3
0

2(2π)2E2
g

∑

η=±1

η

∫

dq1dq2Nq1

(p× q1 + q2 × p)z

(

1 + η

2
− np+q1

)(

1− η

2
− np+q2

)

δ(εp − εp+q1 + ηωq1)δ(εp − εp+q2 + ηωq2). (23)

После линеаризации подынтегрального выражения
по неравновесной добавке к функции распределения
электронов и интегрирования по углам, получаем:

Q(as){δn(s)
p } = −γ

2ncg
3
0τmF sinα

2(2π)2E2
gp

θ

(

εp − ms2

2

)

∑

η,ν1,2=±1

∫

dq1dq2Nq1(ν1q1 − ν2q2)

[

ν1q1δ(εF − εp − ηωq1)θ(ηεF − ηεp − ωq2)

−ν2q2δ(εF − εp − ηωq2)θ(ηεF − ηεp − ωq1)
]

. (24)

В квантовом режиме интеграл столкновений так же
имеет пороговую особенность, что неудивительно,
так как ограничение на энергию электрона являет-
ся прямым следствием закона сохранения энергии
в процессе рассеяния. В данной задаче закон со-
хранения энергии сводится к требованию равенства
скорости звука в бозе-конденсате и проекции скоро-
сти электрона на направление импульса излучаемого
(поглощаемого) боголона. С физической точки зре-
ния этот механизм эквивалентен эффекту Вавилова-
Черенкова. Проводя окончательное интегрирование
в двух предельных случаях, εF = ms2/2 и εF ≫
≫ ms2/2, получаем:

j
(i)
H =

πe20mncg
3
0

90~3

(

τγ(kBT )
2

s2Eg~
2

)2

E, (25)

j
(e)
H = 2j

(i)
H . (26)

Сравнение выражений (21), (22), (25) и (26) пока-
зывает, что при превышении характерной тепловой
длиной волны боголонов, λT = s/T , межслоевого
расстояния, l, последнее перестает оказывать суще-
ственное влияние на величину эффекта, так как рас-
стояние между слоями вовсе отсутствует в итоговых
формулах в квантовом режиме. Температурная зави-
симость при этом переходе усиливается и меняется с
jH ∼ T 2 на jH ∼ T 4.

В квантовом режиме возможно вычислить ток
с использованием интеграла столкновений (24), не
прибегая к дополнительным упрощениям. Однако
ответ оказывается малоинформативен, и мы ограни-
чимся качественным описанием порогового поведе-
ния поперечного тока. Будем отсчитывать энергию в

Письма в ЖЭТФ том 121 вып. 1 – 2 2025



Долинный эффект Холла в двумерной электрон-экситонной системе 119

единицах тепловой энергии, β = (εF −ms2/2)/kBT , а

плотность тока нормируем на j(i)H (рис. 4). Из графи-
ка на рис. 4 видно, что ширина сглаживания ступени

Рис. 4. (Цветной онлайн) Зависимость плотности попе-
речного тока от параметра β = (εF − ms2/2)/kBT в
квантовом режиме

порядка ∼ 10kBT , при этом в центре ступени обра-
зуется плато шириной порядка ∼ kBT . Кроме того,
энергия Ферми в квантовом режиме входит только
в безразмерную величину β ∼ (ne − Cnc) (где C –
константа), и график на рис. 4 можно интерпретиро-
вать как зависимость поперечного тока от концен-
трации электронного газа. Тот факт, что с увеличе-
нием энергии Ферми ток ДЭХ быстро выходит на
насыщение, означает, что величина эффекта выше
порога определяется не столько количеством свобод-
ных носителей заряда, сколько “способностью” экси-
тонного бозе-конденсата рассеивать электроны.

Приведем оценки, подтверждающие принятые в
работе приближения. Пусть концентрация электро-
нов равна n = 1012 см−2, тогда условие pF l ∼ 10 ≫ 1

выполняется для l ≈ 100 нм. Эта длина удовле-
творяет условию применимости потенциала (16), ес-
ли размер экситона порядка d . 10 нм. При ши-
рине запрещенной зоны Eg = 1.66 эВ и γ2/E2

g ∼
∼ 10 · · ·100 Å2 скорость Ферми принимает значения
vF ∼ 107 · · · 108 см/с. Чтобы сравнить ее со скоро-
стью звука в конденсате, оценим последнюю с ис-
пользованием параметров: d = 5 нм, M = 0.5m0,
ǫ(h-BN) =, 7.1, nc = 3 · 1011 см−2 – что дает соиз-
меримое со скоростью Ферми значение s ≈ 1.4 ×
× 107 ∼ 107 см/с. Таким образом, варьируя концен-
трации электронов и экситонов в разумных преде-
лах, можно исследовать весь необходимый диапазон
изменения параметра β (рис. 4). Характерная темпе-
ратура, разделяющая тепловой и квантовый режим
рассеяния, принимает значение Tc ≈ 5 К, что ока-

зывается весьма удобный значением. Получаем, что
квантовый режим начинается с десятых долей К в
сторону уменьшения температуры, а тепловой – с де-
сятков К. Оба режима оказываются доступны для
наблюдения, так как температура перехода диполь-
ных экситонов в ДПМ в сверхтекучее состояние оце-
нивается значениями десятков К [27].

В заключение приведем оценки эффективности
механизма электрон-экситонного рассеяния по срав-
нению с иными вкладами, для чего воспользуемся ре-
зультатами работы [10] и выражением (21). При низ-
ких температурах доминирующим механизмом рас-
сеяния выступает skew-рассеяние электронов на при-
месях. Полагая nc/n ∼ l2ni ∼ 1, получаем отношение
вкладов jexH /j

skew-imp
H ∝ (kBT/εF )

2(g0/4πu0)
3. Таким

образом, вклад экситонного конденсата будет замет-
ным в очень высокоподвижных образцах с макси-
мально возможным размером экситонов d, для кото-
рых отношение g0/4πu0 ∼ 1. Параметрически отлич-
ным от асимметричного (skew) рассеяния является
когерентное рассеяния электронов на парах приме-
сей, для которого отношение вкладов jexH /j

X-imp
H ∝

∝ 10−3(kBTτ/~)
2 близко к единице в квазибали-

стическом режиме транспорта, kBTτ/~ > 30 ≫ 1.
Наконец, сравнение со фононным механизмом по-
казывает, что основным параметром здесь выступа-
ет эффективный размер экситонов, jexH /j

skew-ph
H ∝

∝ (2d[10nm]/Ξ[eV])3, где использованы типичные
значения параметров ДПМ (плотность ρ = 4 ×
× 10−7 г/см2, скорость звука c = 4.5 · 105 см/с), а эф-
фективный размер экситонов d и константа дефор-
мационного потенциала Ξ измеряются в десятках нм
и эВ соответственно. Используя для оценки констан-
ту деформационного потенциала Ξ = 2 эВ, получаем,
что экситонный и фононный вклады являются вели-
чинами одного порядка при d ≈ 10 нм.
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