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В ортоферрите GdFeO3 обнаружен ряд новых особенностей в поведении магнитных, магнитоэлек-
трических и магнитодиэлектрических свойств при индуцированных магнитным полем H‖a, b, c фазовых
переходах при низких температурах. Установлено трехкратное возрастание диэлектрической проницае-
мости в виде пиков при спин-флип переходах в Gd подсистеме, сопровождаемое подавлением спонтанной
электрической поляризации, а также диэлектрические аномалии при индуцированном полем H‖a спин-
переориентационном переходе в Gd (спин-флоп) и Fe подсистемах как в сегнетоэлектрической (T < TGd

N ),
так и в параэлектрической (T > TGd

N ) фазах. При H‖c ниже точки компенсации намагниченности об-
наружен необычный переход, обусловленный разворотом спонтанного слабоферромагнитного момента
Fe от направления против магнитного поля к направлению вдоль поля, сопровождаемый разрывом
его антиферромагнитной связи с моментом Gd, индуцированным магнитным полем. Предложена тео-
ретическая модель, учитывающая допускаемые симметрией обменные взаимодействия и магнитоэлек-
трическую связь, позволившая впервые согласованно описать температурные и полевые зависимости
диэлектрической проницаемости и электрической поляризации.
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Введение. Редкоземельные ортоферриты,
RFeO3, относятся к широкому классу оксидных
материалов со структурой перовскита, в которых
конкурирующие взаимодействия ионов железа и
редкой земли (R) определяют богатые свойства и
интересные явления, в частности, разнообразные
фазовые переходы [1–3]. Большой интерес представ-
ляют также мультиферроэлектрические явления,
которые активно исследуются в настоящее время в
ортоферритах с R= Tb, Dy, Gd [4–7]. Выявлению
новых аспектов этих и других эффектов в одном из
ярких представителей этого класса мультиферрои-
ков, GdFeO3 посвящена данная работа.

Ортоферрит гадолиния GdFeO3 имеет искажен-
ную структуру перовскита с центросимметричной
орторомбической элементарной ячейкой (пр. гр.
Pbnm), содержащей по 4 иона Fe3+ и Gd3+ [8]. Бла-
годаря взаимодействию Дзялошинского–Мория, так
же, как и у других редкоземельных ортоферритов,
спины железа (S = 5/2) упорядочиваются антифер-
ромагнитно при TFe

N = 661К [9] в слабо скошенную к
оси z структуру Г4(GxFz) в обозначениях Берто [10].
При температуре TGd

N ≈ 2.5К происходит собствен-
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ное антиферромагнитное упорядочение моментов
гадолиния в нецентросимметричную структуру
Г5(gxay) [11–12].

Магнитные свойства гадолиниевого ортоферрита
начали изучать достаточно давно [11–14]. В работе
[11] обнаружена точка компенсации намагниченно-
стей железной и гадолиниевой подсистем вдоль оси
c при 3.4 К, однако в [15] для нее получено значе-
ние Tcomp = 7.5К. Мессбауэровские [13] и магни-
тострикционные [14] исследования индуцированной
магнитным полем H‖a спиновой переориентации по-
казали важную роль анизотропия Gd–Fe взаимодей-
ствия. Существенным вкладом в изучении физиче-
ских свойств GdFeO3 явилось обнаружение магни-
тоэлектрического эффекта – спонтанной электриче-
ской поляризации вдоль оси c при температуре ниже
TGd
N , сопровождаемое сильным ростом диэлектриче-

ской постоянной [5].
Интерес к исследованиям GdFeO3 не ослабевает

до настоящего времени. В качестве примеров ука-
жем работы: китайских авторов [16], по исследова-
нию температурных и полевых зависимостей коэф-
фициента теплопроводности GdFeO3, в том числе
в области сверхнизких температур до 0.3 К; индий-
ских авторов [17] по комплексным исследованиям по-
ликристаллических образцов GdFeO3. Систематиче-
ское исследование динамики фононов и локальной
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структуры монокристалла GdFeO3 проведено в рабо-
те китайских авторов [18] методом рамановской спек-
троскопии, в том числе под гидростатическим дав-
лением до 23 ГПа. В работе [19] методом генерации
второй гармоники с временным разрешением пока-
зана возможность одновременного проявления в те-
рагецовых спектрах пропускания GdFeO3 магнито-
резонансных и решеточных мод разного происхож-
дения (рамановских и полярных) вследствие фазо-
вого перехода в нецентросимметричное антиферро-
магнитное состояние ниже 2.2 К. Большая намагни-
ченность GdFeO3 дает заметный вклад в магнитную
энтропию и магнитокалорический эффект, что пред-
ставляет интерес для приложений [15]. Отметим так-
же недавнюю работу [20], в которой продемонстри-
рован магнитоэлектрокалорический эффект (изме-
нение температуры в электрическом поле) в сегнето-
электрическом состоянии GdFeO3, обладающий вы-
сокой энергетической эффективностью.

В данной работе на основе детальных исследова-
ний магнитных, магнитоэлектрических и магнитоди-
электрических свойств GdFeO3 сообщается об обна-
ружении необычного фазового перехода, обусловлен-
ного разворотом спонтанного слабоферромагнитного
момента Fe от направления против магнитного поля
к направлению вдоль поля, о гигантских пиках ди-
электрической проницаемости при спин-флип пере-
ходах в Gd подсистеме и ряде других явлений.

Методика эксперимента. Монокристал-
лы GdFeO3 были выращены А. М. Балбашовым
методом зонной плавки [21] и сориентированы
рентгенографическим методом Лауэ. Для измерения
электрической поляризации и диэлектрической
проницаемости из кристаллической були вырезались
плоскопараллельные пластинки, перпендикулярные
оси c, с толщиной ∼ 0.5–1.0 мм и площадью сечения
∼ 26 мм2. Для магнитных измерений вырезался
образец близкой к кубику формы с размерами
∼ 1.3 мм и массой ∼ 16 мг. Все измерения проводи-
лись на установке Quantum Design MPMS XL5. Для
регистрации изменений электрического заряда ис-
пользовался электрометр Keithley 6517A. Измерение
диэлектрической проницаемости проводилось ем-
костным четырехточечным методом на специально
сконструированной вставке для установки MPMS с
регистрацией сигнала на прецизионном измерителе
импеданса Agilent E4980A. Измерения, как правило,
проводились на фиксированной частоте 90 кГц.
Предварительно измерялись частотные зависимости
проницаемости в интервале 20 Гц–2 МГц при низких
температурах в H = 0 и H = 5Тл, которые пока-
зали, что в интервале частот от 200 Гц до 1 МГц

электроемкость образца практически не зависит от
частоты. Теоретический анализ результатов прово-
дился в рамках подходов изложенных в [7, 22] для
ортоферритов, ортохромитов с учетом допускаемых
симметрией взаимодействий.

Экспериментальные результаты и их

обсуждение.

Намагниченность. На рисунке 1а приведены
кривые намагничивания σ(H) вдоль оси c в сла-
бых магнитных полях при разных температурах.
Прямоугольная петля гистерезиса с остаточной
намагниченностью ∼ 1.1 Гс см3/г и коэрцитивным
полем Hc ≈ 500Э при T = 300К соответствует
конфигурации спинов железа Г4(GxFz), устанавли-
вающейся ниже температуры Нееля TN ∼ 661К.
Конфигурация Г4 для железной подсистемы со-
храняется вплоть до самых низких температур
(1.85 К). Однако, зависимость σ(H) при 5 К показы-
вает отсутствие спонтанной намагниченности из-за
точки компенсации намагниченностей железной и
гадолиниевой подсистем [11, 15]. Температурные за-
висимости остаточной намагниченности, измеренные
вдоль оси c, как при нагреве после намагничивания
при 1.85 К (кривая 1 рис. 1b), так и при охлаждении
после намагничивания при 10 К (кривая 2 рис. 1b),
меняют знак при Tcomp = 5.6К. В полях более
400 Э смены знака на температурной зависимо-
сти намагниченности не происходит (кривая 3 на
рис. 1b).

При T ≈ 2.4К происходит антиферромагнит-
ное упорядочение Gd c образованием конфигурации
Г5(gxay) [11, 12]. В магнитных свойствах это прояв-
ляется на температурных зависимостях восприимчи-
вости (χ = σ/H) ниже ∼ 2.5 К, где вдоль оси a она
уменьшается (кривая 4 рис. 1b), в то время как вдоль
осей c и b (кривые 3 и 5 рис. 1b) – почти не меняется.
Уменьшение χa указывает на то, что магнитные мо-
менты Gd3+ ориентированы практически вдоль оси
a, т.е. |ay| ≪ |gx|. Это подтверждается кривыми на-
магничивания, измеренными вдоль оси a при низких
температурах: они испытывают скачкообразное уве-
личение в критических магнитных полях, соответ-
ствующих переориентации магнитных моментов Gd
от оси a к оси c (спин-флоп gx → gz) (рис. 2а, наи-
более отчетливо этот переход виден в увеличенном
масштабе на нижней вставке).

Отметим, что в бóльших полях ∼ 2 Тл при всех
направлениях поля на кривых намагничивания на-
блюдается характерная особенность, связанная с по-
давлением антиферромагнитного упорядочения Gd
(спин-флип переход, Hs−flip), который отчетливо
проявляется в виде излома на производных dσ/dH с
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Рис. 1. (Цветной онлайн) (а) – Кривые намагничивания GdFeO3 вдоль оси c при разных температурах. (b) – Темпера-
турные зависимости остаточной намагниченности вдоль оси c (нижняя панель) после предварительного намагничи-
вания при T = 1.9 К (кривая 1) и при T = 10 К (кривая 2) и DC восприимчивости σ/H (верхняя панель) в H = 2 кЭ
(H‖c – кривая 3, H‖a – кривая 4 и H‖b – кривая 5)

Рис. 2. (Цветной онлайн) Кривые намагничивания: (а) – вдоль осей a, b и c при T = 1.85 К; на нижней вставке – в
увеличенном масштабе, на верхней – производная dσ/dHc. Стрелками отмечены фазовые переходы: красной – спин-
флоп при H‖a, черной – спин-флип и темно-зеленой – переворот спонтанного момента железа вдоль поля при H‖c
(всплески dσ/dHc в полях ∼ ± 1 кЭ вызваны переворотом результирующего момента Gd и Fe подсистем). (b) – Вдоль
a-оси при разных температурах. На вставке – производные sσ/dHa. Стрелками отмечены поля фазовых переходов

последующим их обращением в ноль при насыщении
намагниченности (см. верхнюю вставку на рис. 2а и
вставку на рис. 2b).

Еще одну особенность мы наблюдаем на зависи-
мостях σ(Hc) при T = 1.85К в полях Hrev ∼ 3.7Тл,
т.е. выше поля спин-флипа гадолиниевой подсисте-
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мы. Если в интервале магнитных полей от ∼ 1 Тл до
∼ 3.7 Тл намагниченность вдоль оси c меньше, чем
вдоль a и b – осей, то в районе Hrev намагниченность
увеличивается до значений, соответствующих намаг-
ниченностям вдоль осей a и b, а производная dσ/dH
испытывает небольшой всплеск (верхняя вставка на
рис. 2а). Этот переход принципиально связан с точ-
кой компенсации спонтанного слабоферромагнитно-
го момента Fe mFe и момента Gd MGd, индуцирован-
ного Gd–Fe взаимодействием. Ниже точки компен-
сации намагниченность Gd превышает намагничен-
ность Fe, поэтому mFe направлен против внешнего
поля, а его Зеемановский вклад −mFeHz в термоди-
намический потенциал линейно возрастает с ростом
Hz . Поскольку вклад в термодинамический потен-
циал от момента Gd в обменном Gd–Fe поле −MGd

HGd-Fe
z насыщается в больших полях, это приводит

к тому, что оба вклада сравняются и равновесное
значение антиферромагнитного вектора Gx поменя-
ет знак (Gx → −Gx), так как и mFe и HGd-Fe

z про-
порциональны Gx (см. также дополнительные мате-
риалы). Это сопровождается изменением спонтанно-
го скоса Fe подрешеток от направления против по-
ля к направлению по полю и увеличением магнит-
ного момента при низких температурах на величину
∼ 2|mFe|. Экспериментально определенная величина
изменения намагниченности в районе Hrev = 3.7Тл
составляет ∼ 2.4 Гс см3/г, что, действительно, близко
к удвоенному значению результирующего момента
на ионах железа, который при комнатных температу-
рах составляет ∼ 1.1 Гс см3/г. Используя известные
значения |HGd-Fe

z | = 0.03−0.04Тл [11, 14], можно оце-
нить величину Hrev = HGd-Fe

z MGd/m
Fe = 3.7−5Тл,

что соответствует эксперименту. Данное явление, ко-
торое можно трактовать как “разрыв” антиферро-
магнитной связи спонтанного слабого ферромагнит-
ного момента ионов железа и магнитного момента
Gd, насколько нам известно, в ортоферритах и орто-
хромитах до сих пор не наблюдалось.

В полях выше ∼ 4 Тл намагниченности при T =

= 1.85К вдоль всех осей становятся приблизитель-
но одинаковыми, соответствующими ∼ 7µB на фор-
мульную единицу (см. рис. 2а, правая шкала). При
температурах выше температуры упорядочения Gd
проявляется переход, связанный с переориентацией
моментов железа при H‖a из угловой конфигурации
Г42(GxGzFzFx) в Г2(GzFx), который четко виден на
полевых зависимостях производных dσ/dH (вставка
на рис. 2b).

Магнитоэлектрические и магнитодиэлек-

трические свойства. На рисунке 3а приведены
температурные зависимости электрической поляри-

зации, измеренной вдоль оси c (Pc), в магнитных
полях H‖b, демонстрирующие возникновение элек-
трической поляризации ниже TGd

N = 2.4К, как и
в [5] для H‖a и H‖c. Величина Pc(T ) зависит от
значений приложенного электрического поля E при
его малых значениях, но выходит на насыщение при
E ∼ 2 кВ/см. С ростом магнитного поля кривые
Pc(T ) смещаются в сторону низких температур, а
величина поляризации уменьшается и подавляется
в полях ∼ 2.5 Тл. Отметим наличие гистерезиса на
зависимостях Pc(T ) (показан для Hb = 1.5Тл), а
также некоторых немонотонностей вблизи λ – точ-
ки гелия (∼ 2.2 К), являющихся аппаратурными эф-
фектами. На вставке рис. 3а приведена зависимость
Pc(T ) при нагреве в разных магнитных полях H‖a и
E = 0 после предварительного охлаждения в H = 0

и E = 2 кВ/см. Эти зависимости иллюстрируют бо-
лее крутое падение поляризации при приближении к
TGd
N , т.е. размытие перехода при измерениях в E 6= 0

обусловлено поляризующим действием этого поля в
параэлектрической области.

На рисунке 3b приведены зависимости Pc(Hb)

при T = 1.85К. Образец предварительно охлаждал-
ся от 3.5 до 1.85 К в H = 0 и E = 2 кВ/см. Да-
лее при том же значении E производилось скани-
рования по магнитному полю в последовательности:
0 → 5Тл (кривая 1 рис. 3b; 5 Тл→ −5Тл (кривая 2

рис. 3b); −5Тл→ 5Тл (кривая 3 рис. 3b). Затем элек-
трическое поле выключалось, и прописывалась зави-
симость Pc(Hb) от 5 Тл до −5Тл (кривая 4 рис. 3b).
После чего снова включалось E = 2 кВ/см и из-
мерялась зависимость Pc(Hb) от −5Тл до H = 0)
(кривая 5 рис. 3b). Отметим возникновение поля-
ризации, хотя и меньшей величины, после выведе-
ния магнитного поля в E = 0 (кривая 4 рис. 3b),
что можно связать с эффектом памяти в доменных
стенках ферроэлектрических доменов, и восстанов-
ление насыщенного значения поляризации после по-
вторного включения электрического поля (кривая 5

рис. 3b).

Измеренные нами зависимости Pc(Hc) (нижняя
панель рис. 4а) при T = 1.85К в целом соответ-
ствуют приведенным в [5] кривым. Обратим внима-
ние на необычные скачки поляризации Pc(Hc), из-
меренной при E = 0, а именно, ее увеличение при
перемагничивании в полях ∼ 0.1 Тл. При повторных
циклах перемагничивания характер этих скачков со-
храняется, хотя величина поляризации испытывает
некоторые изменения. Данные скачки указывают на
перераспределение доменов с противоположно на-
правленной поляризацией, т.е. перестройку домен-
ной структуры.
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Рис. 3. (Цветной онлайн) (а) – Температурные зависимости поляризации вдоль оси c в разных магнитных полях H‖b.
Стрелки показывают направление изменения температуры (охлаждение или нагрев). На вставке зависимость Pc(T )

при нагреве в E = 0 в разных H‖a. (b) – Зависимость поляризации от магнитного поля H‖b при T = 1.85 К. Но-
мера у кривых – последовательность сканирования по полю (1 – 0 → 5 Тл; 2 – 5Тл→ −5 Тл; 3 – −5 Тл→ 5 Тл; 4 –
5Тл→ −5 Тл; 5 – −5 Тл→ 0). Кривые 1, 2, 3 и 5 измерены в E = 2 кВ/см, кривая 4 – в E = 0

При более высоких температурах (2.1 и 2.3 К)
уменьшается как величина Pc(H), так и величина
разрушающего ее магнитного поля при всех его на-
правлениях.

Для анализа наблюдаемых магнитоэлектриче-
ских (Pz) и магнитодиэлектрических (εz) свойств
вдоль c-оси (c‖z) мы использовали актуальную маг-
нитоэлектрическую часть термодинамического по-
тенциала, следуя [23], в виде

ΦME(F,G, f ,g, Ez) =

= −Ez[gx(λ1Gx + λ′1fz + λ′′1Hz) +

+ gz(λ2Gz + λ′2fx + λ′′2Hx) + . . .], (1)

где gx,z и fx,z антиферромагнитные и ферромагнит-
ные компоненты базисных векторов Gd подсисте-
мы, λ1,2, λ′1,2 . . . – магнитоэлектрические константы,
в которых λ1,2 являются главными, поскольку обу-
словлены в основном изотропной частью обменного
Gd–Fe (gG) [5, 24] и дают сравнимый вклад Pz и
εz при различной ориентации g и G. Несобственная
электрическая поляризация Pz = −∂ΦME/∂Ez =

= [λ1Gx + λ′1fz + λ′′1Hz]gx появляется только при

упорядочении Gd и определяется в основном темпе-
ратурной и полевой зависимостью ее основного па-
раметра порядка gx(T,Hz). Равновесные значения
параметров порядка были получены минимизаци-
ей неравновесного термодинамического потенциала
системы с учетом Gd–Gd и Gd–Fe взаимодействия
(см. дополнительные материалы), на основе кото-
рых были рассчитаны зависимости поляризации и
диэлектрической проницаемости (рис. 4). Использо-
вался только один магнитоэлектрический параметр
λ1 = 2200мкКл/м2, определяющий спонтанную по-
ляризацию при T = 0 и соответствующий наблюда-
емой поляризации 1350 мкКл/м2 при T = 1.85K в
монодоменизированном электрическим полем состо-
янии. Полевые зависимости поляризации в двух раз-
ных многодоменных состояниях 5 и 6, возникающие
в зависимости от предыстории в нулевом электриче-
ском поле, изображены точечными линиями с при-
вязкой к величине поляризации при H = 0, опре-
деляемой соотношением доменов ±Pz. Отметим яв-
ное отличие поведения поляризации в состояниях 5
и 6 вблизи спин-флип перехода, что указывает на
разный характер доменной структуры и ее поведе-
ния в поле.

Письма в ЖЭТФ том 121 вып. 1 – 2 2025



Магнитные, диэлектрические и магнитоэлектрические явления. . . 109

Рис. 4. (Цветной онлайн) (а) – Зависимость поляризации Pc (нижняя панель) и диэлектрической проницаемости εc
(верхняя панель) от магнитного поля H‖c при T = 1.85 К. Номера у кривых Pc показывают последовательность ска-
нирования по полю (1 – 0 → 5 Тл; 2 – 5Тл→ −5 Тл; 3 – −5 Тл→ 0; 4 – 0 → 5 Тл; 5 – 5 Тл→ −5 Тл; 6 – −5 Тл→ 5 Тл;
7 – 5Тл→ 0). Кривые 1, 2, 3 и 7 измерены в E = 2 кВ/см, кривые 4, 5 и 6 – в E = 0. Аналогично для εc кривая 1

соответствует 0 → 5 Тл; 2 – 5Тл→ −5 Тл; 3 – −5 Тл→ 0; 4 – 0 → 5 Тл; 5 – 5Тл→ 0. Точки – эксперимент; пунктирные
и штрихпунктирные линии – теория. (b) – Температурные зависимости εc в разных магнитных полях H‖c. Точки –
эксперимент; штрихпунктирные линии – теория. Стрелки показывают направление изменения температуры

На рисунке 4b приведены экспериментальные и
рассчитанные температурные зависимости εc в раз-
ных магнитных полях H‖c, которые вызывают сме-
щение пиков диэлектрической проницаемости в сто-
рону низких температур. Кривые проявляют гисте-
резисные явления при нагреве и охлаждении (для
примера показан в Hc = 2.5Тл). Аналогичная кар-
тина наблюдается и для H‖b. Пик диэлектриче-
ской проницаемости обусловлен неустойчивостью си-
стемы относительно нецентросимметричного анти-
ферромагнитного параметра порядка gx, который
индуцируется электрическим полем Ez через маг-
нитоэлектрическое взаимодействие, а соответству-
ющая электрическая восприимчивость расходится,
как ∼λ21/(T − TGd

N ) в параэлектрической фазе (см.
дополнительные материалы).

Согласно нашим измерениям, полевые зависимо-
сти εc(H) при всех направлениях магнитного поля,
которые ранее не были представлены в литературе,
имеют похожий вид и демонстрируют сильный рост
проницаемости при приближении к полю спин-флип
перехода с пиком, соответствующим исчезновению
поляризация. При дальнейшем росте поля εc(H) вы-

ходит на постоянное значение (см. рис. 4а, для Pc(Hc)

и εc(Hc). Однако в области полей меньше 1 Тл на
зависимостях εc(Hc) наблюдаются дополнительные
аномалии, связанные с перемагничиванием слабого
ферромагнитного момента при коэрцитивных полях
(рис. 4а, верхняя панель). При H‖a ниже спин-флип
перехода также наблюдаются аномалии εc при спин-
флоп переходе в Gd – подсистеме (рис. 5а). Последо-
вательность сканирования по полю при T = 1.85К
отмечена цифрами 1–4, причем кривая 1 (рис. 5а из-
мерена после предварительной поляризации образца
в электрическом поле E = 2 кВ/см, а кривые 2–4

(рис. 5а – при E = 0 в последующих измерениях).
При увеличения T до 2.5 К≈ TGd

N максимум на за-
висимостях εc(H) смещается к H = 0 (малиновая
кривая на рис. 5а), а при T > TGd

N проницаемость в
H = 0 сильно уменьшается и ее полевая зависимость
становится слабой. Тем не менее, на зависимостях
εc(Ha) наблюдается небольшая аномалия при Hcr,
которую мы связываем со спин-переориентационным
переходом в подсистеме Fe, обменно связанного с Gd:
Γ24(GxGzFzFxfzfxc) → Γ2(GzFxfxcy) (см. рис. 5b).
Примерно в тех же магнитных полях наблюдаются
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Рис. 5. (Цветной онлайн) Зависимость диэлектрической проницаемости от магнитного поля H‖a: (а) – при T = 1.85 К
(кривая 1 измерена после поляризации образца в электрическом поле E = 2 кВ/см, а остальные кривые 2 – 4 в E = 0)
и T = 2.5 К. Номера показывают последовательность сканирования по полю (1 – 0 → 5 Тл → 0; 2 – 0 → 5 Тл; 3 –
5 Тл → −5 Тл; 4 – −5 Тл → 5 Тл. (b) – При температурах выше TGd

N . Стрелками отмечены аномалии на кривых εc(Ha)

слабые аномалии на производных dσ/dH , получен-
ных дифференцированием кривых намагничивания
σ(Ha).

На рисунке 6 приведена Ha−T фазовая диаграм-
ма, построенная на основе магнитодиэлектрических
и магнитных данных. Линии, разделяющие разные
фазы, получены в результате анализа равновесных
состояний системы, исходя из минимума термоди-
намического потенциала, и условий фазовых пере-
ходов между ними (см. дополнительные материа-
лы). Сплошная черная линия выше TGd

N соответ-
ствует переходу из угловой магнитной структуры
Γ24(GxGzFzFxfzfxcy) в индуцированную слабофер-
ромагнитную структуру Γ2(GzFxfxcy) с моментом
только вдоль оси x(a) и согласуется с ранее получен-
ными данными [14]. Зеленая линия ниже точки TGd

N

описывает спин-флип переход, связанный с подав-
лением полем антиферромагнитных компонент Gd
Γ5(gx) или Γ7(gz) и исчезновением электрической по-
ляризации.

Используя известные данные для параметров
Gd–Fe взаимодействия [14], а также наши данные
по намагниченности для определения χGd

⊥ , KCd
ac , мы

промоделировали температурные зависимости поро-
говых полей спин-переориентационных и спин-флип
переходов (подробности см. дополнительные матери-
алы), которые согласуются с экспериментом выше и

ниже точки Нееля (рис. 6), включая данные работы
[14], и указывают на то, что спиновая переориента-
ция в Fe подсистеме может происходить через уг-
ловую фазу (оранжевая область на рис. 6). Об этом
свидетельствует немного меньшее значение поля Hx1

(фиолетовая линия на рис. 6) по сравнению с полем
полной переориентации Hx2 (красный пунктир на
рис. 6). Наличие угловой фазы в Fe подсистеме за-
фиксировать по кривой намагничивания затрудни-
тельно из-за его малого вклада по сравнению с χGd

⊥ .
Прямую информацию о состоянии Fe подсистемы да-
ют Мессбауэровские исследования [13], согласно ко-
торым пороговое поле полной переориентации в фа-
зу Γ2(GzFx) индуцированной H‖a составляет ∼ 7 кЭ
при 2 К, т.е. больше наблюдаемого нами и в [5] спин-
флоп перехода в Gd. Однако, в работе [5] при анали-
зе магнитных данных авторы предполагали переход
Fe подсистемы сразу в фазу Γ2(GzFx) одновремен-
но со спин-флоп переходом Gd. Для окончательного
выяснения этого вопроса, видимо, требуются допол-
нительные исследования при более низких темпера-
турах.

Заключение. Несмотря на то, что основное со-
стояние иона Gd3+–8S7/2 является гораздо более изо-
тропным по сравнению с состояниями соседних тя-
желых редкоземельных ионов (Tb, Dy, Ho) и его на-
магниченность при всех направлениях магнитного
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Рис. 6. (Цветной онлайн) Фазовая диаграмма GdFeO3

при H‖a. Точки – эксперимент: черные квадраты –
σ(H), красные треугольники – из ε(H), синие звездоч-
ки – из ε(T ). Линии – теория: синяя разделяет уг-
ловую магнитную структуру Γ24 и индуцированную
слабоферромагнитную структуру Γ2 (полное описание
структур через векторы антиферро- и ферромагнетиз-
ма приведены на рисунке). Зеленая линия отражает
спин-флип переход Gd, черная горизонтальная линия
разделяет фазы Γ24 и Γ2 железа, фиолетовая – линия
спин-флоп перехода Gd (Hx1), красная пунктирная –
расчетная линия (Hx2) для случая одновременной спи-
новой переориентации Gd и Fe подсистем (см. текст)

поля насыщается уже в полях, меньших 5 Тл, соб-
ственное антиферромагнитное упорядочение гадо-
линиевой подсистемы в нецентросимметричную фа-
зу Γ5(gxay) при низких температурах приводит к
возникновению интересных магнито-анизотропных и
магнитоэлектрических явлений. Среди них отметим
обнаруженный нами при H‖c и отсутствующий в
других направлениях необычный переход, связан-
ный с разворотом спонтанного слабоферромагнитно-
го момента Fe от направления против магнитного по-
ля (ниже Tcomp) к направлению вдоль поля, который
сопровождается разрывом его антиферромагнитной
связи с индуцированным внешним полем моментом
Gd и является одним из проявлений анизотропии
Gd–Fe взаимодействия. Показано, что наблюдаемый
спин-флоп переход в Gd подсистеме (gxay → gzfx)

при T < TGd
N может сопровождаться переориента-

цией Fe спинов как в фазу Γ2(GzFx), так и в про-
межуточную угловую структуру Γ24 с последующим
доворотом до Γ2. Это определяется тонким балан-
сом анизотропных взаимодействий в обеих подсисте-
мах, в частности, собственной энергией анизотропии

ионов Gd KGd
ac , стабилизирующей их антиферромаг-

нитный момент вдоль a-оси, который сопоставим с
энергией анизотропии Fe подсистемы.

Обнаружено гигантское возрастание диэлек-
трической проницаемости в магнитном поле при
спин-флип переходах в Gd подсистеме. Установ-
лено, что возникающая при антиферромагнитном
упорядочении электрическая поляризация, а также
температурные и полевые зависимости диэлектриче-
ской проницаемости определяются одним и тем же
параметром магнитоэлектрического взаимодействия
обменно-стрикционного (Gd–Fe) происхождения.
Важным фактором в этих процессах является на-
личие доменной структуры, как в Gd , так и Fe
подсистемах. Это приводит, в частности, к сильной
зависимости поведения электрической поляризации
и диэлектрической проницаемости от предыстории
и наличия постоянного электрического поля, а
также заметного вклада доменной структуры в
диэлектрическую проницаемость.
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