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В экспериментах по спектроскопии неупругого рассеяния лазерных импульсов в водной суспензии на-
ночастиц двуокиси кремния SiO2 при комнатной температуре впервые обнаружено смещение “гравитаци-
онного центра” ОН-полосы комбинационного рассеяния (до ∼ 10 см−1 к линии накачки) и одновременная
генерация двух компонент вынужденного рассеяния Мандельштама–Бриллюэна с частотными сдвигами
∼ 7.5 ГГц и ∼ 14.3 ГГц как в направлении “назад”, так и “вперед”. Частотный сдвиг ∼ 7.5 ГГц соответ-
ствует стоксовой компоненте рассеяния Мандельштама–Бриллюэна в воде (скорость звука ∼ 1490 м/с),
а компонента со сдвигом ∼ 14.3 ГГц соответствует скорости звука ∼ 2900 м/с, т.е. данная компонента
попадает в диапазон скоростей звука во льду, находящемся при комнатной температуре. Результаты
данных экспериментов указывают, на наш взгляд, на формирование гидратных слоев со льдоподобной
структурой водородных связей вокруг наночастиц SiO2, а также на снижение коэффициента объемного
расширения водной суспензии.
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Введение. Известно [1–4], что вода является
сильно ассоциированной жидкостью, водородные
связи в которой образуют структурные льдопо-
добные молекулярные комплексы. Важно, что из
большого многообразия возможных конфигура-
ций льдов, которые могли бы образоваться при
спонтанной кристаллизации, экспериментально
наблюдали только три типа льда. Так, авторы
работы [1] обнаружили аморфный, кубический и
гексагональный лед (Ih) в эксперименте по спон-
танному эпитаксиальному одновременному росту
льдов на поверхности жидкого гелия в сверхтекучем
состоянии при соприкосновении с ней молекул
Н2О из воздуха при нормальном давлении. Рент-
геноструктурный анализ показал, что повышение
температуры кристаллов сопровождалось фазовыми
превращениями. Тепловые флуктуации водородных
связей разрушали аморфный и кубический лед в
окрестности температур 110 и 200 K, соответствен-
но. Отсюда следует, что наиболее устойчивым к
тепловым флуктуациям является лед Ih, структуру
которого ранее зарегистрировали в слое воды при
комнатной температуре [2].

В работе [3] было показано, что структура льда Ih
энергетически более выгодна, чем разупорядоченные
водородные связи аморфного льда. В молекулярном
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пучке Н2О в интервале температур 150–200 K бы-
ло обнаружено спонтанное формирование кластеров
размерами ∼ 300 молекул со структурой льда Ih, что
приводило к возрастанию амплитуды низкочастотно-
го крыла ОН-полосы спонтанного комбинационного
рассеяния (КР) света в воде. В работе группы Шена
(Y. R. Shen) [4] показано, что параметр порядка у по-
верхности объемной воды выше, чем в квазижидком
слое на поверхности монокристалла льда. В [5] было
показано, что гидратные слои молекул спиртов в вод-
ных растворах имеют структуру льда Ih с высокой
устойчивостью к тепловым флуктуациям вплоть до
температуры 60 ◦С, что наблюдали в эксперименте
по наличию характерного плеча ∼ 3200 см−1 на низ-
кочастотном крыле огибающей ОН-полосы валент-
ных колебаний водородных связей в спектре КР во-
ды, как и в случае водных кластеров [3].

Особый интерес здесь вызывает спектроскопия
резонансов Мандельштама–Бриллюэна в воде и вод-
ных растворах, поскольку частотный сдвиг компо-
нент рассеяния пропорционален скорости звука, ко-
торая описывается формулой

v =

√

1

βρ
, (1)

где ρ – плотность, β – сжимаемость среды. Это поз-
воляет обнаружить увеличение частотной отстрой-
ки при образовании упругих доменов в воде. Так,
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ранее с помощью низкочастотной спектроскопии че-
тырехволнового смешения в водных растворах белка
α-химотрипсин обнаружили рост сдвига резонансов
Мандельштама–Бриллюэна от ∼ 7.5 ГГц до ∼ 13 ГГц
при увеличении концентрации белка [6], что указы-
вало на формирование льдоподобных структур при
гидратации крупных органических молекул.

Оставалось неясным, является ли универсальным
свойство воды формировать структуру льда Ih в гид-
ратных слоях не только больших молекул [3, 5], но
и неорганических наночастиц, например, в водной
суспензии наночастиц двуокиси кремния SiO2, в ко-
торой ранее обнаружили генерацию компонент вы-
нужденного рассеяния Мандельштама–Бриллюэна
(ВРМБ) в направлении “вперед” [7]. Исследование
этого свойства водных растворов и суспензий нано-
частиц SiO2 являлось предметом настоящей работы.

Эксперимент и обсуждение. Эксперименталь-
ное изучение свойств гидратных оболочек в водной
суспензии наночастиц SiO2 проводили с помощью ла-
зерной спектроскопии КР и измерения частотной от-
стройки при ВРМБ.

В [8] была экспериментально обоснована высокая
чувствительность смещения “гравитационного цен-
тра” ОН-полосы КР в воде к деформации ее оги-
бающей при вариации температуры воды. В насто-
ящей работе использовали этот подход, предложен-
ный нами ранее при мониторинге перестройки струк-
турных комплексов в воде [9], для исследования фор-
мирования структуры гидратных оболочек наноча-
стиц кремния SiO2 (диаметром 100 и 350 нм) в зави-
симости от концентрации в водной суспензии SiO2.
Диаметр наночастиц контролировали методом ди-
намического рассеяния света с помощью прибора
Zetasizer Ultra (Malvern Panalytical Ltd., Великобри-
тания). Суспензии приготовляли путем разведения
соответствующей навески наночастиц в бидистилли-
рованной воде с последующим разбавлением для по-
лучения нужных концентраций. Полученные образ-
цы перемешивали ультразвуковым излучением мощ-
ностью 50 Вт в течение получаса (в процессе заменя-
ли часть жидкости в ультразвуковой ванне во избе-
жание нагрева образцов).

В КР-измерениях излучение лазера (Laser
Compact DTL-319QT, Nd3+:YLF, длина волны
излучения второй гармоники 527 нм, длительность
импульса ∼ 7 нс, энергия в импульсе до 100 мкДж,
частота следования импульсов 12 Гц) фокусировали
в кварцевую кювету размерами 10 × 10 × 40мм3 с
образцом водной суспензии наночастиц с помощью
линзы с f = 65мм. Лазерное излучение заводили
через боковую стенку кюветы. Перетяжка сфоку-

сированного пучка была расположена в середине
кюветы на расстоянии ∼ 10 мм выше ее дна (рис. 1).
Рассеянное назад излучение собирали линзой с фо-
кусным расстоянием 210 мм и заводили на входную
щель шириной 250 мкм спектрометра. Спектро-
метр (Oriel MS127i), оборудованный ПЗС-камерой
(ПЗС – прибор с зарядовой связью) со стробиру-
емым усилителем яркости (Andor iStar), позволял
регистрировать спектры КР с разрешением ∼ 7 см−1.

Рис. 1. (Цветной онлайн) Схема эксперимента по
измерению спектров спонтанного комбинационно-
го рассеяния водных суспензий наночастиц SiO2.
Laser – импульсный лазер Laser Compact DTL-319QT;
Spectrometer – дифракционный спектрометр Oriel
MS127i; ICCD – ПЗС-камера со стробируемым усили-
телем яркости Andor iStar; Focusing lens – линза для
фокусировки лазерного излучения в образец; Quartz
cell with sample – кварцевая кювета с исследуемым об-
разцом; Collecting lens – линза для сбора рассеянного
излучения; Al coated mirror – алюминиевое поворотное
зеркало, Colored glass filter – полосовой светофильтр
из цветного стекла марки ОС-13 толщиной 4мм для
подавления упруго рассеянного лазерного излучения

В качестве образцов в экспериментах по спек-
троскопии спонтанного КР были использованы вод-
ные суспензии наночастиц SiO2 диаметром ∼ 350 нм с
концентрациями ∼ 1011 и ∼ 5×1010 см−3 и бидистил-
лированная вода в качестве контрольного образца.

Измерения выполняли по следующему протоко-
лу: образец суспензии интенсивно встряхивали, за-
ливали в кювету и через ∼ 5 мин регистрировали на-
бор из 9 спектров, каждый из которых был получен
при накоплении по 200 лазерным импульсам. Далее,
с помощью процедуры “взвешивания” ОН-полосы КР
воды гауссовой огибающей [8] (см.иллюстрацию ме-
тода на рис. 2, правая панель), для каждого спектра
определяли “гравитационный центр” ОН-полосы и
вычисляли среднее значение частоты центра и сред-
неквадратичное отклонение. В левой части рис. 2
приведена зависимость смещения “гравитационного
центра” ОН-полосы спонтанного КР водных суспен-
зий наночастиц SiO2 от концентрации наночастиц в
суспензии.
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Рис. 2. (Цветной онлайн) Зависимость “гравитационно-
го центра” ОН-полосы спонтанного КР водных сус-
пензий наночастиц SiO2 от концентрации наноча-
стиц в суспензии (слева); иллюстрация метода измере-
ния положения “гравитационного центра” ОН-полосы
(справа)

Из рисунка 2 видно,что повышение концентрации
наночастиц SiO2 сопровождается увеличением вкла-
да характеристической линии льда Ih (∼ 3200 см−1)
в деформацию низкочастотного крыла огибающей
ОН-полосы КР и индуцирует сдвиг “гравитационно-
го центра” полосы. Увеличение сдвига центра ОН-
полосы до ∼ 10 см−1 в сравнении с контрольным об-
разцом бидистиллированной воды указывает на фор-
мирование льдоподобных структур при гидратиро-
вании наночастиц, а также на повышение скорости
звука и увеличение сдвига компонент ВРМБ [7], как
упоминалось выше.

Для проверки предположения о формировании
льдоподобных структур в гидратных слоях вокруг
наночастиц продолжили анализ водных суспензий
наночастиц SiO2 диаметрами ∼ 350 и ∼ 100 нм с кон-
центрациями ∼ 3×108 см−3 и ∼ 2×1011 м−3, соответ-
ственно, методом спектроскопии ВРМБ на установ-
ке, схема которой представлена на рис. 3.

Для измерений спектров ВРМБ излучение второй
гармоники одночастотного импульсного Nd3+:YAG
лазера (длина волны излучения λ = 532 нм, дли-
тельность импульса t = 10 нс, энергия в импуль-
се E = 20мДж) фокусировали в кювету размера-
ми 30× 10× 20мм3 с исследуемым образцом суспен-
зии линзой с фокусным расстоянием 30 мм (рис. 3).
Материал кюветы – плавленый кварц, лазерное из-
лучение фокусировали в середину кюветы, поэтому
интенсивность излучения на входном окне кюветы
была невелика. Излучение, прошедшее через кюве-
ту с образцом, анализировали с помощью интерфе-
рометра Фабри–Перо с областью дисперсии ∆v =

= 0.833 см−1 = 25ГГц (F-P1 на рис. 3), интерфе-
рограммы регистрировали с помощью КМОП-камер

Рис. 3. (Цветной онлайн) Принципиальная схема
ВРМБ измерений. Laser – импульсный одночастотный
лазер; М – поворотное глухое зеркало; Cell – кюве-
та со скошенными окнами с исследуемым веществом;
f1 = f2 = 30 мм – конфокальные линзы; x – область
перетяжки лазерного пучка в середине кюветы, P –
клиновидная отклоняющая пластина; F-P и F-P1 – ин-
терферометры Фабри–Перо с оптической системой для
регистрации спектров прямого и обратного вынужден-
ного рассеяния, соответственно

(Basler acA1920-40um) и обрабатывали на компьюте-
ре в программной среде LabVIEW. Для анализа из-
лучения, рассеянного в направлении “назад”, исполь-
зовали аналогичный интерферометр Фабри–Перо (F-
P на рис. 3).На рисунках 4 и 5 приведены интерфе-
рограммы ВРМБ водных суспензий наночастиц SiO2

диаметрами ∼ 100 нм и ∼ 350 нм, соответственно, в
геометрии рассеяния “вперед” (панели (a) на рис. 4
и 5) и “назад” (панели (b) на рис. 4 и 5).

Из рисунков 4 и 5 следует, что в спектрах ВРМБ
водных суспензий наночастиц SiO2 с диаметрами
∼ 100 и ∼ 350 нм, в геометрии рассеяния “вперед” и
“назад”, присутствует как известная линия со сдви-
гом ∼ 7.5 ГГц, которая соответствует стоксовой ком-
поненте ВРМБ в воде, так и вновь полученная линия
со сдвигом ∼ 14.3 ГГц. Ширина этой линии сравни-
ма с шириной линии ∼ 7.5 ГГц, что указывает на вы-
сокую добротность акустического резонанса струк-
турных комплексов, индуцированных наночастица-
ми SiO2 в водной суспензии. Линия ∼ 14.3 ГГц ра-
нее не была описана в литературе, однако, недавно
[10] при изучении спектров вынужденного рассеяния
лазерного излучения в суспензиях наночастиц пори-
стого кремния в воде были зарегистрированы сток-
сова и антистоксова компоненты ВРМБ с частотны-
ми сдвигами ∼ 14.2 ГГц и ∼ 14.5 ГГц, соответственно.
Существенно, что в суспензии аналогичных наноча-
стиц близкой концентрации, но в этаноле, компонен-
та со сдвигом ∼ 14.3 ГГц отсутствовала.
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Рис. 4. (Цветной онлайн) Спектр вынужденного рассеяния Мандельштама–Бриллюэна в водной суспензии наноча-
стиц SiO2 диаметром ∼ 100 нм. Геометрия рассеяния “вперед” (a) и “назад” (b). Здесь и далее зеленым цветом на
интерферограммах выделены соседние порядки линии излучения лазера, красным – стоксовы линии ВРМБ

Рис. 5. (Цветной онлайн) Спектр вынужденного рассеяния Мандельштама–Бриллюэна в водной суспензии наночастиц
SiO2 диаметром ∼ 350 нм. Геометрия рассеяния “вперед” (a) и “назад” (b)

Проведенная оценка скорости звука в воде v по
стоксовой компоненте ВРМБ

v =
∆fλн

2n
, (2)

соответствующей ∆f ∼ 14.3ГГц (где λн – длина вол-
ны излучения лазера, n – коэффициент преломле-
ния льда), дала v ∼ 2900м/с, что намного выше,
чем табличная величина для воды (∼ 1490 м/с), но
меньше, чем скорость “быстрого” звука в воде [11] и
скорость звука в массивном льду (∼ 3200–3900 м/с)
[12]. На рисунке 6 представлена температурная за-
висимость скорости звука во льдах разной плотно-
сти вплоть до величины ∼ 3200 м/с при температу-
ре плавления в 0 ◦С (данные воспроизведены из ра-
боты [13]). Экстраполяция линейной зависимости до
комнатной температуры показала существование об-
ласти скоростей звука от ∼ 2600 до ∼ 3300 м/с для
образцов льда с плотностью от 890 до 900 кг/м3.

Полученное совпадение скорости звука
∼ 2900 мм/с, измеренной нами в водной суспензии
наночастиц по частотному сдвигу новой компоненты
ВРМБ (∼ 14.3 ГГц), с областью скоростей звука во
льдах (полый круг на рис. 6) дает основание заклю-
чить, что в воде в области, ограниченной каустикой
пучка, существуют структуры гексагонального льда
при комнатной температуре. Отметим, что ранее
[2] также регистрировали структуру льда Ih в
слое воды при комнатной температуре, при этом в

Рис. 6. (Цветной онлайн) Температурная зависимость
скорости звука в двух типах льдов с плотностью
∼ 890 кг/м3 (полые треугольники) и ∼ 900 кг/м3 (по-
лые квадраты); данные воспроизведены из работы [13].
Пунктирными линиями показаны экстраполяции тем-
пературных зависимостей до комнатных температур.
Круг на 20 ◦С в зоне между линиями экстраполяции
показывает значение скорости звука в упругих оболоч-
ках гидратирования наночастиц SiO2 с льдоподобной
структурой в водной суспензии, вычисленное по сдви-
гу ВРМБ ∼ 14.3 ГГц

гидратных слоях спиртов структура льда (плечо
на низкочастотном крыле полосы ОН) существует
до температуры раствора 60 ◦С [5]. Более того, из
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спектров ВРМБ видно, что ширина линии рассея-
ния со сдвигом ∼ 14.3 см−1 заметно меньше ширины
линии накачки. Вероятно, данное сужение линии
указывает на наличие в объеме водной суспензии
упорядоченных структурных образований в слоях
гидратации неорганических пористых наночастиц
SiO2. При этом отсутствие известной для объемной
воды линии со сдвигом ∼ 7.5 ГГц в спектре ВРМБ
в водной суспензии наночастиц пористого кремния
[10] указывает на то, что в объеме каустики пучка
происходит замещение изотропной доли воды между
наночастицами, другой, структурированной фазой
льдоподобных каркасов, обладающих высокой сте-
пенью упорядоченности (узкая линия ∼ 14.3 ГГц).
Более того, наличие антистоксовой компоненты [10]
в спектре рассеяния указывает на четырехволновое
взаимодействие накачки со встречной волной сток-
совой компоненты в направлении назад с высоким
коэффициентом преобразования.

Отметим, что отсутствие сдвига ∼ 14.3 ГГц в сус-
пензии этих же наночастиц в этаноле может ука-
зывать на “энергетическую выгодность” процесса
спонтанного формирования структуры льда на про-
странственно развитой контактной границе наноча-
стиц пористого кремния (либо сферических нано-
частиц SiO2) и воды несмотря на интенсивное бро-
уновское движение молекул Н2О при температуре
300 K. Существенно, что эта способность воды к фор-
мированию каркасов льда совершенной структуры
(с высоким параметром порядка [4]) будет увели-
чиваться с понижением температуры воды. Отсю-
да следует,что обнаружение моды “быстрого” звука
(∼ 3200 м/с) в переохлажденной до −20 ◦С воде ме-
тодом неупругого рассеяния нейтронов и рентгенов-
ских лучей [11] может быть результатом присутствия
в воде “другой компоненты воды” – комплексов мо-
лекул H2O, объединенных водородными связями в
льдоподобные структуры. Несомненно, это предпо-
ложение требует отдельного исследования, посколь-
ку ставит под сомнение вязкоупругую интерпрета-
цию динамики воды [11].

Заключение. В настоящей работе сообщается о
наблюдении сдвига “гравитационного центра” ОН-
полосы КР в водной суспензии наночастиц SiO2

(диаметром 350 нм) в сторону низкочастотного кры-
ла до 10 см−1 при увеличении их концентрации до
1011 см−3. Предположение о формировании льдопо-
добной структуры в гидратной оболочке наночастиц
подтверждается наблюдением в спектре ВРМБ но-
вой стоксовой компоненты со сдвигом величиной
∼ 14.3 ГГц, как в прямом, так и в обратном направ-
лении. Данный сдвиг соответствует скорости зву-
ка ∼ 2900м/с. Существенно, что измеренная ско-
рость попадает в диапазон скоростей звука во льдах

при комнатной температуре. Обнаруженное крат-
ное сужение линии стоксовой компоненты ВРМБ со
сдвигом ∼ 14.3 см−1 также указывает на образование
в гидратных оболочках кварцевых наночастиц льдо-
подобных каркасов с высоким значением параметра
порядка. Физически ясно, что открытие явления за-
мещения доли изотропной воды (сдвиг ∼ 7.5 ГГц) или
полное ее замещение структурами льда будет сопро-
вождаться уменьшением или обнулением коэффици-
ента объемного расширения водной суспензии при
замерзании. Это требует отдельного изучения. Осо-
бый интерес здесь вызывают технологии криогенной
консервации биоматериалов.
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