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Проведены исследования генерации суперконтинуума и третьей гармоники в дистиллированной воде
сфокусированными фемтосекундными лазерными импульсами коротковолнового инфракрасного диапа-
зона в областях их нормальной и аномальной дисперсии. Обнаружена конкуренция соответствующих
нелинейностей третьего порядка – для длин волн накачки 900–1200 нм (в области нормальной диспер-
сии) происходит генерация суперконтинуума с уширением спектра преимущественно в синюю область.
При прохождении фемтосекундных лазерных импульсов с длиной волны 1300 нм в области аномальной
дисперсии воды обнаружена генерация третьей оптической гармоники с уширением в красную область
спектра. Насыщение и спад выхода третьей гармоники на длине волны 1300 нм с ростом энергии им-
пульсов связывается с ухудшением фазового синхронизма в результате ионизации среды, что благопри-
ятствует генерации суперконтинуума, нечувствительного к синхронизму.
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Проведены исследования генерации суперконти-
нуума и третьей гармоники в дистиллированной во-
де сфокусированными фемтосекундными лазерными
импульсами коротковолнового инфракрасного диа-
пазона в областях их нормальной и аномальной дис-
персии. Обнаружена конкуренция соответствующих
нелинейностей третьего порядка – для длин волн на-
качки 900–1200 нм (в области нормальной дисперсии)
происходит генерация суперконтинуума с уширени-
ем спектра преимущественно в синюю область. При
прохождении фемтосекундных лазерных импульсов
с длиной волны 1300 нм в области аномальной дис-
персии воды обнаружена генерация третьей опти-
ческой гармоники с уширением в красную область
спектра. Насыщение и спад выхода третьей гармони-
ки на длине волны 1300 нм с ростом энергии импуль-
сов связывается с ухудшением фазового синхрониз-
ма в результате ионизации среды, что благоприят-
ствует генерации суперконтинуума, нечувствитель-
ного к синхронизму.

1. Высокая интенсивность ультракоротких лазер-
ных импульсов (УКИ) позволяет использовать их
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для исследования нелинейных процессов, таких как
фазовая самомодуляция (ФСМ), самофокусировка и
филаментация [1, 2]. Мощное лазерное излучение мо-
жет трансформироваться в импульсы белого света –
суперконтинуума (СК) – при взаимодействии с раз-
личными оптическими средами [3–5]. Явление гене-
рации СК обычно сопряжено с формированием фи-
ламента вследствие динамического равновесия меж-
ду процессами керровской самофокусировки и де-
фокусировки на плазме, образующейся в результа-
те многофотонной ионизации вещества [6–11]. Ис-
точники белого света активно применяются для кар-
тирования биологических образцов, многофотонной
и нелинейной спектроскопии, детектировании хими-
ческих соединений в атмосфере, генерации сверхко-
ротких световых импульсов, параметрической гене-
рации [12–14].

В качестве жидкой активной среды для форми-
рования СК часто используется вода. Многочислен-
ные экспериментальные и теоретические работы по-
казывают возможность генерации СК в режиме нор-
мальной дисперсии групповых скоростей от ультра-
фиолетового (УФ) до ближнего инфракрасного (ИК)
диапазонов при варьировании длины волны и мощ-
ности накачки. В настоящее время также проводятся
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исследования филаментации и генерации СК в усло-
виях аномальной дисперсии. Отличительной особен-
ностью белого света в этом случае является возник-
новение смещенного в синюю область спектрально-
го максимума [15]. Вода в ближнем ИК-диапазоне
имеет несколько сильных полос поглощения, одна из
которых (с центром ∼ 1460 нм), связана с симметрич-
ными и ассиметричными резонансными колебаниями
молекулы H2O [16]. Тем не менее, мощные УКИ на
длинах волн более 1300 нм позволяют достичь значи-
тельного спектрального уширения в воде более чем
на две октавы [15], и исследовать влияние различных
режимов дисперсии групповых скоростей на спектр
СК [5].

Помимо формирования СК процесс филамента-
ции мощных УКИ в различных средах сопровож-
дается генерацией оптических гармоник, механизм
образования которых описан, например, в [17]. Ре-
зультаты в этой области интересны для создания но-
вых источников коротковолнового излучения, иссле-
дования особенностей нелинейно-оптического откли-
ка плазмы в интенсивных световых полях [18]. О
генерации третьей гармоники (ГТГ) и управлении
ее параметрами при филаментации мощных УКИ
в газах сообщается в работе [19]. Четные и нечет-
ные оптические гармоники могут быть сформиро-
ваны при оптическом пробое воздуха [20] в услови-
ях жесткой фокусировки и филаментации УКИ [21].
Аналогичные эффекты могут наблюдаться в жид-
ких средах. В работе [22] при формировании СК в
воде под действием лазерных импульсов с длиной
волны 1240 нм в режиме филаментации было заре-
гистрировано излучение с максимумом ∼ 413 нм, что
соответствует третьей оптической гармонике, спек-
тральные характеристики которой не были исследо-
ваны. Также сообщалось об эффективной ГТГ при
филаментации излучения с длиной волны 1300 нм в
пяти различных жидкостях [23]. Для толуола бы-
ло показано, что в процессе филаментации вели-
чина выхода третьей гармоники (ТГ) уменьшается
по мере увеличения интенсивности импульсов на-
качки вплоть до образования СК. Кроме того, ге-
нерация гармоник в сфокусированных пучках мо-
жет применяться как метод двухмерной высоко-
контрастной визуализации микроплазменных обла-
стей в твердых диэлектриках [24]. Тем не менее,
вопрос конкуренции нелинейных процессов при пе-
реходе от ГТГ к формированию суперконтинуума
в воде в процессе филаментации коротковолновых
ИК УКИ в областях их нормальной и аномаль-
ной дисперсии в настоящее время все еще остается
открытым.

В данной работе представлены результаты
исследования спектральных характеристик ТГ и
СК,генерация которых вызвана филаментацией
лазерных импульсов с длинами волн 900–1300 нм
и длительностью ∼ 80–310 фс различной энергии в
дистиллированной воде. Показано, что для длин
волн накачки вблизи полосы поглощения воды
наблюдается преимущественная генерация третьей
оптической гармоники,интенсивность которой нели-
нейно зависит от мощности лазерных импульсов.

2. Система параметрической генерации (Parus,
Авеста-Проект) с твердотельным иттербиевым лазе-
ром накачки (TETA-20, Авеста-Проект), максималь-
ной энергией в импульсе E = 500мкДж, длительно-
стью импульсов 250 фс и частотой следования 10 кГц
использовалась для параметрической генерации с
длинами волн 900–1300 нм. Излучение фокусирова-
лось в кварцевую кювету с дистиллированной водой
с длиной оптического пути 10 мм, толщиной стенок
1.2 мм объективом с числовой апертурой NA= 0.1
(ЛОМО) на глубину 3 мм в пятно радиусом по уров-
ню энергии 1/e2 от 2.3 до 4.2 мкм (рис. 1). На выхо-
де параметрического генератора устанавливался ко-
ротковолновый или длинноволновый пропускающий

Рис. 1. (Цветной онлайн) Схема спектральных изме-
рений

фильтр SP1000 (Фотооптик) или LP1050 (Фотооп-
тик) с длиной волны отсечки 1000 и 1050 нм для длин
волн 900 и 1105–1300 нм соответственно.Изменение
энергии импульсов от 0.1 до 4.0 мкДж производилось
путем поворота кристалла второй гармоники, кото-
рая используется для параметрической генерации.
После прохождения кюветы с водой излучение соби-
ралось флюоритовой линзой (CaF2) с фокусным рас-
стоянием 40 мм и фокусировалось на щели спектро-
метра видимого-ближнего ИК диапазона ASP-150TF
(Авеста-Проект) с использованием коротковолновых
пропускающих фильтров SP850-SP1000 (Фотооптик)
для уменьшения интенсивности лазерной линии.

Энергия и мощность синего крыла СК, вклю-
чая ТГ, были измерены с помощью кремниевого фо-
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Рис. 2. (Цветной онлайн) Тепловые карты спектров суперконтинуума, третьей гармоники и лазерных импульсов после
прохождения через кювету с водой для длин волн 900 нм (а), 1105 нм (b), 1200 нм (c) и 1300 нм (d) и энергиями в
импульсе 0.1–4.0 мкДж

тодиодного (Ophir PD10-C) и пироэлектрического
(Ophir 3A-P) датчиков. Длительность импульсов на
выходе параметрического генератора регистрирова-
лась автокоррелятором ASF-30 (Авеста-Проект), и
составляла от 80 до 310 фс. Измерения спектров ла-
зерных импульсов в ближнем ИК-диапазоне (1105–
1300 нм) проводились при помощи ИК-спектрометра
ASP-IR-2.6 (Авеста-Проект). Коэффициент погло-
щения воды был определен путем измерения про-
пускания кварцевой кюветы с водой (длина пути
10 мм) с использованием спектрофотометра СФ2000
(ОКБ Спектр) и ИК-Фурье спектрометра Vertex 70v
(Bruker).

3. Спектральные измерения СК и ТГ на выхо-
де из кварцевой кюветы с дистиллированной водой
проводились с использованием двух спектрометров
и последующей сшивки сигналов по частично пере-
крывающимся рабочим диапазонам. Соответствую-
щие тепловые карты представлены на рис. 2. Про-
хождение лазерных импульсов с длиной волны λ =

= 900 нм (τ ≈ 180фс) и энергией E = 0.3−1.7мкДж
через кювету с водой сопровождается значительным
(∼ 200 нм) уширением и образованием синего крыла
в диапазоне 600–800 нм. При энергии лазерных им-
пульсов E = 2.1мкДж визуально наблюдается появ-
ление конической эмиссии и устойчивой генерации

белого света (СК) в диапазоне 400–1000 нм. Увели-
чение энергии лазерных импульсов до E = 3.5мкДж
приводит к увеличению интенсивности СК почти на
порядок и последующему насыщению, так как при
дальнейшем увеличении энергии накачки до 4 мкДж
интенсивность СК не претерпевает заметных изме-
нений (рис. 2а). Отметим, что интенсивность белого
света практически постоянна в диапазоне от 450 до
800 нм при энергиях выше 3.5 мкДж.

Рассмотрим распространение лазерных импуль-
сов с длиной волны λ = 1105 нм (τ ≈ 310фс) через
кварцевую кювету с дистиллированной водой. Зна-
чительное спектральное уширение в красную и си-
нюю область достигается при энергии E = 1.7мкДж
(рис. 2b). Увеличение энергии лазерных импульсов
до значений E = 2.3−2.9мкДж приводит к эмиссии
красного света с максимумом ∼ 750 нм и синим кры-
лом с интенсивностью на 1–2 порядка ниже. Генера-
ция устойчивого СК наблюдается при энергии E =

3.4мкДж, когда происходит значительное увеличе-
ние интенсивности свечения в диапазоне 400–800 нм.
Совокупная ширина спектра СК при этом составляет
порядка 1000 нм (400–1400 нм). Увеличение энергии
накачки от E = 3.4мкДж до E = 3.8−3.9мкДж уси-
ливает синее крыло и обеспечивает практически по-
стоянную интенсивность СК в диапазоне 500–800 нм.
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Рис. 3. (Цветной онлайн) (a) – Нормированные спектры лазерных линий накачки в диапазоне 900–1300 нм с наложени-
ем спектра поглощения воды (правая шкала); (b) – зависимость интегральной спектральной интенсивности (красная
кривая) в диапазоне 410–450 нм и выхода ТГ (черная кривая) от энергии лазерных импульсов накачки λ = 1300 нм,
на вставке изображена эффективность (в %) ГТГ в воде на длине волны λ = 1300 нм

Другая картина наблюдается при прохождении
лазерных импульсов с длиной волны λ = 1200 нм
(τ ≈ 100фс) через дистиллированную воду. Ла-
зерная линия уширяется (∼ 50–100 нм) практически
симметрично в синюю и красную области с появ-
лением отдельных компонент с максимумами ∼ 930,
1050 и 1330 нм. Рост энергии накачки до значений
E = 2.8−3.1мкДж приводит к генерации СК с
явным провалом вблизи 800 нм (рис. 2с). Увеличе-
ние энергии лазерных импульсов до величин E =

3.3−4.0мкДж усиливает СК, амплитуда которого
становится на порядок выше. Спектр СК с общей
шириной 400–1400 нм в видимом диапазоне не яв-
ляется плоским и имеет выраженное синее крыло
с максимумом ∼ 500–530 нм. Генерации излучения в
УФ-диапазоне с длиной волны менее 400 нм не проис-
ходит.

Лазерные импульсы с длиной волны λ = 1300 нм
(τ ≈ 150фс) попадают в область сильного поглоще-
ния воды, что отражается в более низкой амплиту-
де спектров на выходе из кюветы. При самых низ-
ких энергиях лазерных импульсов E = 0.6мкДж
на выходе из кюветы наблюдается синее свечение,
спектральный максимум которого (∼ 433 нм) соот-
ветствует ТГ излучения накачки. Отметим, что из-
лучение пропадает, если удалить воду из кюветы,
т.е. ГТГ не вызвана прохождением лазерного излу-
чения через стенки кюветы. Увеличение энергии на-
качки до E = 3.8мкДж усиливает интенсивность ТГ,
спектр которой практически симметрично уширяет-
ся в синюю и красную область,захватывая диапа-
зон 400–480 нм (рис. 2d). Генерация слабого излуче-
ния СК наблюдается при E = 4.0мкДж, перекры-
вая диапазон 390–800 нм с максимумом ∼ 650 нм. За-

метно, что амплитуда ТГ в спектре при этом умень-
шается.

Основной причиной генерации СК в газообраз-
ных и жидких средах является ФCМ лазерного им-
пульса в условиях нелинейного взаимодействия с ве-
ществом [25]. Этот процесс может ограничиваться за
счет генерации большого количества свободных но-
сителей заряда (электронов) при высоких интенсив-
ностях излучения и образования критической плаз-
мы (плазменная дефокусировка), а также другими
конкурирующими нелинейными процессами. ФСМ
связана с нелинейностью третьего порядка, которой
обычно сопоставляется нелинейная восприимчивость
χ(3)(ω;ω, ω,−ω). В то же время, для ГТГ в среде с ку-
бической нелинейностью типа χ(3)(3ω;ω, ω, ω) необ-
ходимо выполнение условия фазового синхронизма,
которое можно записать в виде n(ω) = n(3ω). Его
выполнение возможно, если одна из частот ω или
3ω попадает в область аномальной дисперсии,обычно
вблизи сильных полос поглощения вещества. В на-
шем случае ГТГ наблюдается при накачке с дли-
ной волны λ = 1300 нм, которая попадает на край
сильной (α > 20 см−1) полосы поглощения молеку-
лы воды [16], т.е. в отличие от генерации СК ГТГ
усиливается промежуточным резонансом. Действи-
тельно, отстройка накачки от края поглощения в об-
ласть меньших длин волн (900–1200 нм) приводит к
более стабильной генерации СК, интенсивность ко-
торого выше при сравнимых энергиях лазерных им-
пульсов. Отсутствие ТГ в этом случае указывает
на конкуренцию нелинейных процессов, связанных с
χ(3)(ω;ω, ω,−ω) (ФСМ, самофокусировка, генерация
СК) и χ(3)(3ω;ω, ω, ω) (ГТГ), вклад которых в нели-
нейную поляризацию среды зависит как от энергии
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накачки, так и от условий резонансного (вблизи по-
лосы поглощения) и нерезонансного возбуждения.

Дополнительно в случае накачки с длиной вол-
ны λ = 1300 нм были установлены зависимости от
энергии УКИ накачки для энергии выхода ТГ и
синего крыла СК (410–450 нм), вырезанных набо-
ром фильтров (LP410 + SP450, Фотооптик), с ис-
пользованием кремниевой ПЗС-линейки (диапазон
работы 190–1100 нм). Зависимости энергии выхо-
да ТГ (черные точки) и интегральной спектраль-
ной интенсивности ТГ + СК в диапазоне 410–450 нм
(красные точки) представлены на рис. 3b. По ме-
ре увеличения энергии лазерных импульсов накач-
ки обе кривые демонстрируют нелинейный рост
с последующим насыщением в диапазоне энергий
E = 2.9−3.3мкДж. Дальнейший рост энергии накач-
ки до значений E = 3.5мкДж приводит к снижению
выхода ТГ, в то время как интегральная спектраль-
ная интенсивность продолжает незначительно увели-
чиваться. При этом отношение энергии ТГ и СК к
энергии накачки лазерных импульсов ETHG+SC/Elas

(рис. 3b, вставка), характеризующее эффективность
генерации третьей гармоники демонстрирует мак-
симальную эффективность преобразования ∼ 0.1 %
(E1300 nm = 2.5мкДж) c энергией E433 nm = 3 нДж и
указывает на уменьшение вклада ТГ при E1300 nm >

> 2.5мкДж. Кроме того, продолжающийся рост
интегральной спектральной интенсивности ТГ + СК
при энергии накачки E1300 nm = 4мкДж, когда на
выходе из кюветы наблюдается генерация белого све-
та, и уменьшение эффективности ГТГ указывают на
ухудшение условий фазового синхронизма и перерас-
пределение энергии УКИ накачки в пользу ФСМ на
основной частоте и генерации СК.

4. В заключение,в данной работе были исследо-
ваны особенности нелинейных процессов генерации
СК и третьей оптической гармоники при фокуси-
ровке фемтосекундных коротковолновых ИК лазер-
ных импульсов в дистиллированную воду. Исполь-
зование излучения коротковолнового ИК-диапазона
(900–1200 нм) приводит к значительному (порядка
1000 нм) синему уширению спектра и стабилизации
интенсивности белого света в диапазоне 500–850 нм.
Накачка лазерными импульсами с длиной волны
1300 нм вблизи сильной полосы поглощения воды
приводит к генерации третьей оптической гармоники
с максимальной эффективностью ∼ 0.1 % при энер-
гии накачки E1300 nm = 2.5мкДж, при этом по мере
увеличения энергии лазерных импульсов наблюдает-
ся постепенное насыщение выхода ТГ, связанное с
ухудшением фазового синхронизма. Различный ха-
рактер нелинейных процессов – ГТГ и СК – прояв-

ляющийся при отстройке длины волны накачки от
края полосы сильного поглощения воды указывает
на конкуренцию нелинейных процессов третьего по-
рядка в условиях резонансного и нерезонансного воз-
буждения.
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A. Varanavičius, Opt. Lett. 28, 1269 (2003).

3. F. Silva, D.R. Austin, A. Thai, M. Baudisch,
M. Hemmer, D. Faccio, A. Couairon, and J. Biegert,
Nat. Commun. 3, 807 (2012).
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