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Недавно синтезированный четверной перовскит CuCu3Fe2Re2O12 обладает сильным ферромагнетиз-
мом и необычными электронными свойствами, включая повышенную электронную теплоемкость. При-
менение расчетов электронной структуры из первых принципов однозначно указывает важность много-
частичных эффектов в этом соединении. В то время как в методе DFT+ U CuCu3Fe2Re2O12 является
полуметаллическим ферримагнетиком, в теории функционала плотности (DFT) в сочетании с теорией
динамического среднего поля (DMFT) он оказывается металлом. Сильные электронные корреляции при-
водят к перенормировке электронного спектра и образованию некогерентных состояний вблизи уровня
Ферми. Электронная теплоемкость и магнитные свойства, полученные в подходе DFT+DMFT, лучше
согласуются с имеющимися экспериментальными данными, чем полученные другими методами расчета
зонной структуры.
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Введение. Ряд четверных перовскитов
ACu3B2B

′
2O12 обладают очень интересными

электронными и магнитными свойствами. Неко-
торые из них, например, CaCu3Fe2Re2O12 [1],
NaCu3Fe2Re2O12 [2] и LaCu3Fe2Re2O12 [3] большими
магнитными моментами в упорядоченной фазе и вы-
сокими температурами Кюри и, как предполагается,
являются полуметаллическими ферромагнетиками
(ПМФ) или, корректнее, ферримагнетиками.

С другой стороны, среди них имеется ряд
парамагнитных соединений с высокими зна-
чениями коэффициента линейной электрон-
ной теплоемкости γ. Для CaCu3Cu2Ir2O12,
γ = 211мДж/моль K2 [4]; для CaCu3Ir4O12 экспери-
ментальное γ = 173мДж/моль K2, но расчеты в при-
ближении локальной электронной плотности (LDA)
дают гораздо меньшее значение 17 мДж/моль K2,
показывая, что электронная теплоемкость сильно
увеличивается за счет электронных корреляций,
возможно, кондовского происхождения [5]. Инте-
ресно, что γ в Ca1−xYxCu3Co4O12 уменьшается с
157 мДж/моль K2 для x = 0 до 47 мДж/моль K2

1)Y.Long.
2)e-mail: Valentin.Irkhin@imp.uran.ru

для x = 1 [6]. Для системы CaCu3Ru4−xFexO12

коэффициент линейной электронной теплоемкости
увеличивается с легированием Fe от 90 мДж/моль K2

для x = 0 до 271 мДж/моль K2 для x = 0.2, причем
признаки магнитного порядка наблюдаются для
всех образцов, легированных Fe [7].

Сильно ферромагнитные четверные перовскиты
также могут иметь повышенные значения γ (на-
пример, 95 мДж/моль K2 для LaCu3Co2Re2O12 [8]
и около 35 мДж/моль K2 для CaCu3Fe2Re2O12 [9]).
В CuCu3Fe2Re2O12 γ = 62мДж/моль K2 [9]. Кро-
ме того, CuCu3Fe2Re2O12 демонстрирует сильно ан-
гармоническую решеточную теплоемкость, которая
описывается в терминах реттлинга (rattling) иона Cu,
недавно теоретически обнаруженного в [10] (особен-
ность, отсутствующая для CaCu3Fe2Re2O12). В то же
время, магнитный момент насыщения (∼ 5µB) и тем-
пература Кюри TC = 190K значительно ниже, чем
у CaCu3Fe2Re2O12 с большой намагниченностью на-
сыщения 8.7 µB и TC = 560K [1].

Эти свойства CuCu3Fe2Re2O12 слабо совмести-
мы с полуметаллическим ферромагнетизмом. Дей-
ствительно, ПМФ, будучи типичными сильными кол-
лективизированными ферромагнетиками, обладают
в одном из спиновых каналов энергетической ще-
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лью, которая может иметь различную природу, так
что их магнитный момент стремится к максимально
возможному значению. Щель может возникать ли-
бо из-за гибридизации, либо из-за расщепления Хаб-
барда, как в сильно коррелированных системах [11].
В состоянии ПМФ обычные спин-флуктуационные
механизмы усиления эффективной массы не работа-
ют, поскольку процессы переворота спина запреще-
ны (хотя некоторые механизмы, связанные с некоге-
рентными состояниями, могут давать вклад в тепло-
емкость [12]). Таким образом, повышенные значения
γ в ферромагнитных четверных перовскитах пред-
ставляют собой проблему и возникает задача описа-
ния их основного состояния.

В настоящей работе проведены первопринципные
исследования электронной структуры и магнитного
состояния в четверном перовските CuCu3Fe2Re2O12.
С этой целью для понимания основных свойств
используется традиционная теория функционала
плотности (DFT – Density Functional Theory); метод
DFT + U [13] позволяет учитывать статические
электрон-электронные корреляции; современный
подход DFT + DMFT [14, 15], который представляет
собой комбинацию теории функционала плотности и
теории динамического среднего поля [16], рассмат-
ривает корреляционные эффекты динамическим
способом и применяется для более детального
изучения корреляционных эффектов. Полученные
результаты позволяют говорить о значительных
электронных корреляциях в CuCu3Fe2Re2O12.

Результаты. Кристаллическая структура для
CuCu3Fe2Re2O12 с пространственной группой Pn-3
показана на рис. 1. Атомы Cu занимают две кристал-
лографически неэквивалентные позиции. Ионы Cu
первого типа (Cu1 =A) расположены в углах куби-
ческой примитивной ячейки и окружены кислород-
ными икосаэдрами, показанными серым цветом (ле-
вая панель рис. 1). Ионы Cu второго типа (Cu2 =A′)
имеют кислородное окружение в виде квадрата, в ко-
тором вырождение 3d оболочки Cu полностью сни-
мается. Ионы переходных металлов Fe и Re занима-
ют позиции B и B′ соответственно и образуют сетку
октаэдров с общими углами, окрашенных в зеленый
и оранжевый цвета на правой панели рис. 1. d-зоны
этих ионов переходных металлов сначала расщепля-
ются полем лиганда на t2g и eσg состояния. Оба типа
октаэдров (как FeO6, так и ReO6) описываются то-
чечной группой C3i. Это приводит к дополнительно-
му расщеплению t2g-орбиталей на состояния a1g и eπg .

Рисунок 2 показывает полную и парциальные
плотности состояний (DOS – Density of States), по-
лученные методами DFT + U и DFT (вставка на ри-

Рис. 1. (Цветной онлайн) Левая панель иллюстрирует
кристаллическую структуру CuCu3Fe2Re2O12 с раз-
личным типом полиэдров кислорода (золотого цвета),
окружающих атомы переходных металлов. Правая па-
нель показывает ту же структуру с удаленным икоса-
эдром вокруг иона Cu1 (голубой цвет) и квадратной
плакеткой вокруг иона Cu2 (синий). Сеть наклонных
зеленых и оранжевых октаэдров видна вокруг ионов
Fe и Re соответственно

Таблица 1. Заполнения парциальных d-орбитальных состоя-
ний, магнитные моменты и мгновенные квадраты магнитных
моментов для ионов переходных металлов, полученные с ис-
пользованием различных подходов. Верхние индексы означа-
ют различные приближения расчета электронной структуры:
DFT – немагнитные расчеты, sp-DFT – спин-поляризованная
версия, DFT +U обозначает комбинацию DFT и упрощен-
ной статической поправки Хаббарда к зонной структуре, а
DMFT – комбинацию теории функционала плотности и тео-
рии динамического среднего поля. Поскольку состояния Cu1

3d полностью заняты и считаются некоррелированными в ме-
тоде DFT +DMFT, соответствующие значения отсутствуют

Cu1 Cu2 Fe Re

nDFT 9.44 9.179 6.183 4.582

nsp−DFT 9.433 9.187 5.962 4.558

msp−DFT 0.024 0.068 3.659 −0.111

nDFT+U 9.616 9.275 5.875 4.516

mDFT+U 0.004 0.524 4.062 −0.859

nDMFT – 8.893 5.381 3.907

mDMFT – −0.011 4.276 −0.527
√

〈m2
z〉 – 0.982 4.434 1.343

сунке). Для расчетов использовался пакет VASP [17]
в сочетании с обменно-корреляционным функциона-
лом PBE [18]. Во всех случаях использовался па-
раметр обрезания 500 эВ и k-сетка 8 × 8 × 8 в об-
ратном пространстве. Для ионов переходных метал-
лов приняты следующие параметры экранированно-
го кулоновского взаимодействия и хундовского обме-
на: UFe = 4 эВ, JFe = 0.9 эВ, URe = 2 эВ, JRe = 0.5 эВ,
UCu = 7 эВ, JCu = 0.9 эВ. Эти значения взаимо-
действий используются для стандартной параметри-
зации орбитально-зависимой матрицы кулоновского
взаимодействия [13] и хорошо согласуются с опуб-
ликованными данными для соединений переходных
металлов [19–21]. Были опробованы оба типа схемы
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DFT + U [22, 23], доступные в VASP. Далее в работе
будут представлены результаты для варианта реали-
зации DFT + U, предложенного в статье [23].

Рис. 2. (Цветной онлайн) Полная и парциальные плот-
ности состояний, полученные в DFT+ U расчете для
CuCu3Fe2Re2O12. Cu1 находится в лигандном икосаэд-
ре, тогда как Cu2 – в окружении квадратной плакетки.
На вставке с использованием той же цветовой кодиров-
ки показаны плотности состояния (DOS), полученные
в немагнитном DFT расчете. Поскольку DOS со спи-
ном вверх на уровне Ферми отсутствует, но магнитные
моменты Fe и Re имеют противоположное направле-
ние, система является полуметаллическим ферримаг-
нетиком

Видно, что в DFT + U расчете CuCu3Fe2Re2O12

является полуметаллическим ферримагнетиком с за-
прещенной щелью в одном спиновом канале, ∆↑

g =

= 1.88 эВ, и плотностью состояний на уровне Ферми
в другом спиновом канале, N↓(EF ) = 6.21 сост./(эВ
ф.е.). Последняя определяется в основном d состоя-
ниями ионов Re, Fe и Cu2 с примешиванием сильно
гибридизованных O 2p состояний. 3d состояния иона
Cu1, который находится внутри икосаэдра (оранже-
вый цвет на рис. 2), полностью заняты, они располо-
жены около −2.5 эВ и не вносят вклад в плотность
состояний на уровне Ферми. 3d состояния Cu2 (зеле-
ный цвет) лежат ниже по энергии, чем соответству-
ющие орбитали для Cu1. Подзона со спином вверх
полностью заполнена, но состояния со спином вниз
пересекают уровень Ферми, что приводит к неболь-
шому магнитному моменту, mCu2

= 0.52µB. 3d↑ зо-
на Fe (красный цвет) сильно гибридизуется с O 2p
зоной (коричневый) и расположена в районе от −8

до −1 эВ. Плотность 3d↓ состояний Fe практически
полностью находится выше уровня Ферми, что в
итоге дает магнитный момент mFe = 4.06µB. Зон-
ная структура Re 3d состояний (пурпурный цвет на
рис. 2) более интересна: состояния со спином вверх
почти полностью пусты с t2g и eσg состояниями, рас-

положенными от 1 до 2 эВ и от 5 до 6.5 эВ соот-
ветственно. Состояния со спином вниз частично за-
полнены и пересекают уровень Ферми. Это приво-
дит к магнитному моменту mRe = −0.86µB, про-
тивоположному по направлению магнитным момен-
там Fe и Cu (наиболее вероятно, из-за антифер-
ромагнитного сверхобменного взаимодействия). Та-
ким образом, полная ферримагнитная конфигура-
ция Cu↑Fe↑Re↓ напоминает магнитную конфигура-
цию в CaCu3Fe2Re2O12 [1]. Полный магнитный мо-
мент, включая не только вклады внутри атомных
сфер, дает величину, близкую к 10 µB/ф.е. Почти
целочисленная величина магнитного момента, опре-
деляемая согласно правилу Слэтера–Полинга полной
валентностью, является типичной ситуацией для по-
луметаллического магнетизма (в рассматриваемом
случае ферримагнетизма).

Низкоэнергетический DFT гамильтониан для
расчетов DMFT был построен обычным для соеди-
нений переходных металлов способом. А именно, в
проектируемый гамильтониан включаются все зоны,
пересекающие уровень Ферми, а также кислородные
зоны, сильно гибридизованные с ними. В случае
CuCu3Fe2Re2O12 это состояния Cu 3d, Fe 3d, Re 5t2g
и O 2p. Поскольку пустые зоны Re eσg расположены
на 5 эВ выше уровня Ферми и отделены щелью
от низколежащих состояний, мы исключили их из
рассмотрения, чтобы сократить вычислительные
затраты. Немагнитная зонная структура, кото-
рая является отправной точкой для DFT + DMFT
расчетов, представлена на вставке рис. 2. Чтобы
получить гамильтониан малой размерности для
DMFT расчетов, был использован метод проек-
ционных операторов Ванье [24]. В DFT + DMFT
расчетах полностью занятые O 2p и Cu1 3d со-
стояния рассматриваются как некоррелированные.
Также отметим, что в DFT + DMFT использовался
тот же набор параметров взаимодействия, что и
ранее в DFT + U расчетах. Для учета сильных
электронных корреляций в рамках DFT + DMFT
применялся пакет AMULET [25]. Эффективная
примесная проблема, возникающая в DMFT, была
решена с помощью квантового метода Монте-Карло
с непрерывным временем [26, 27] при температуре
T = 200K.

Полученные в DFT + DMFT расчетах разрешен-
ные по спинам и орбиталям спектральные функции
для коррелированных состояний Cu, Fe и Re пред-
ставлены на рис. 3 (сверху вниз). Вставки на этом
рисунке показывают соответствующие мнимые зна-
чения собственно-энергетической части Σ(iωn) (ωn –
мацубаровская частота). Отрицательная (положи-
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Рис. 3. (Цветной онлайн) Спектральные функции
DFT+ DMFT для CuCu3Fe2Re2O12. Различные панели
показывают разрешенные по спинам и орбиталям спек-
тральные функции для Cu2 (вверху), Fe (в середине) и
Re (внизу). Cu2 имеет квадратное плакетное окруже-
ние. Вставки на соответствующей панели показывают
мнимые значения собственно-энергетических частей с
использованием той же цветовой кодировки

тельная) мнимая часть Σ(iωn) соответствует спину
вверх (majority) и вниз (minority). Ясно видно, что
состояния для обеих проекций спина являются ме-
таллическими. Следовательно, в DFT + DMFT под-
ходе CuCu3Fe2Re2O12 не является полуметалличе-
ским ферримагнетиком. Все состояния Cu2 3d, кро-
ме одного, заняты. Частично занятая орбиталь име-
ет псевдощелевое поведение вблизи уровня Ферми
с ферми-жидкостным типом мнимой части Σ(iωn)

(фиолетовый цвет). Квазичастичный вычет Z−1 =

= 1− ∂ℑΣ/∂ωn для этой орбитали составляет около
0.3, тогда как для остальных орбиталей это значе-
ние близко к 0.7. Это указывает на корреляционное
усиление электронной теплоемкости.

Упорядоченный магнитный момент для Cu2 силь-
но уменьшается в DFT + DMFT подходе до −0.01µB

при T = 200K с направлением момента, противопо-
ложным DFT + U. В то же время мгновенный квад-
рат магнитного момента 〈m2

z〉Cu2
= 0.97µ2

B указы-
вает на то, что ион Cu2 находится в конфигурации
d9 с локализованным магнитным моментом, а упо-
рядоченный магнитный момент исчезает из-за теп-
ловых флуктуаций, которые отсутствуют в методе
DFT + U. 3d состояния Fe со спином вверх почти пол-
ностью заняты, как и в подходе DFT + U, но щель
в этом спиновом канале закрыта, и, более того, на
уровне Ферми возникает узкий пик квазичастично-
го типа. Состояния со спином вниз почти пусты и
имеют псевдощель. Упорядоченный магнитный мо-
мент Fe 3d равен 4.28µB, что немного больше, чем
в методе DFT + U. Среднее от квадрата магнитного
момента железа, 〈m2

z〉Fe = 19.66µ2
B, почти идеаль-

но совпадает с квадратом упорядоченного магнитно-
го момента, что говорит об отсутствии продольных
флуктуаций.

Мнимые части собственных энергий для обоих
направлений спина являются некогерентными с рас-
ходимостью при малых ωn (см. вставку на рис. 3).
В то же время эта расходимость недостаточно силь-
на, чтобы создать изоляторное состояние. t2g состо-
яния Re имеют узкий пик чуть выше уровня Ферми
для направления спина вверх и псевдощель в дру-
гом спиновом канале. Мнимые части Σ(iωn) стре-
мятся к нулю при малых ωn, а среднее значение для
ZRe составляет около 0.83, что предполагает умерен-
ные электронные корреляции для этого иона. Упо-
рядоченный магнитный момент на Re уменьшен от-
носительно DFT + U и равен −0.53µB. Полный маг-
нитный момент для CuCu3Fe2Re2O12 , полученный
в подходе DFT + DMFT, составляет 7.63µB на ф.е.,
что сильно меньше, чем в DFT + U.

Значение коэффициента линейной электронной
теплоемкости γ, вычисленное в немагнитном DFT
расчете, определяется значением плотности состоя-
ний на уровне Ферми. Из вставки на рис. 2 видно,
что на уровне Ферми имеется существенный пик, ко-
торый приводит к γDFT = 56мДж/(моль K2), что на
∼ 10 % меньше экспериментального значения γexp =

= 62мДж/(моль K2). Тем не менее, это небольшое
расхождение нельзя считать удовлетворительным,
поскольку CuCu3Fe2Re2O12 является магнитным со-
единением: большой пик на уровне Ферми в немаг-
нитном состоянии приводит к магнитной нестабиль-
ности. Соответствующее спин-поляризованное (sp)

решение является металлическим с гораздо меньшей
плотностью состояний на уровне Ферми, что приво-
дит к γsp−DFT = 37мДж/(моль K2), – меньше, чем у
его немагнитного аналога в DFT расчете. Эти несоот-
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ветствия указывают на важность сильных электрон-
ных корреляций в нашей системе.

К сожалению, попытка учесть сильное электрон-
электронное взаимодействие в рамках DFT + U
ухудшает ситуацию. В указанном выше подходе (см.
рис. 2) полученное решение представляет собой по-
луметаллический ферримагнетик с щелью в одном
спиновом канале. Это резко снижает коэффициент
линейной теплоемкости до значения γDFT+U =

= 15мДж/(моль K2), что плохо согласуется с
экспериментом. Упомянутые расхождения разреша-
ются с помощью подхода DFT + DMFT, где сильные
электронные корреляции учитываются более точно
по сравнению с методом DFT + U. Полученное в
DFT + DMFT решение является металлическим с
сильно перенормированной электронной структурой
вблизи энергии Ферми. Следует отметить, что в
то время как для 3d состояний Fe с полностью пу-
стыми и полностью занятыми спиновыми каналами
наблюдается сильное расщепление, подобное стоне-
ровскому, 5d состояния Re являются состояниями
типа Хаббарда с компонентами ниже и выше уровня
Ферми (зоны Хаббарда) и узким квазичастичным
пиком вблизи уровня Ферми. Этот пик означает воз-
буждения, которые могут увеличить эффективную
массу, обратно пропорциональную квазичастичному
вычету. Таким образом, умеренное увеличение
массы электронных состояний приводит к пере-
нормировке линейной электронной теплоемкости,
γDFT+DMFT = 74мДж/(моль K2), что находится в
разумном согласии с экспериментальными данными
и совместимо с магнитными свойствами соединения
CuCu3Fe2Re2O12.

Выводы. В настоящей работе было изучено вли-
яние сильных динамических корреляций на элек-
тронные и магнитные свойства четверного перовски-
та CuCu3Fe2Re2O12. С одной стороны, DFT + DMFT
расчеты (учитывающие эти эффекты в явном ви-
де) частично согласуются со статическим расчетом
в приближении DFT + U касательно зарядовых со-
стояний ионов переходных металлов и магнитных
моментов. С другой стороны, динамические эффек-
ты сильно влияют на электронную структуру рас-
сматриваемого материала и нарушают полуметалли-
ческое состояние, закрывая щель в неосновном спи-
новом канале, также обеспечивая значительное уси-
ление электронной теплоемкости и перенормировку
магнитного момента. Более того, корреляционные
эффекты приводят к образованию нескольких ин-
тенсивных пиков вблизи уровня Ферми, которые от-
сутствуют в DFT + U расчетах. Такие особенности
могут быть связаны с хаббардовскими зонами, кото-

рые описываются в терминах некогерентных состо-
яний, наблюдаемых в оптических переходах [28, 29].
Наши результаты показывают, что правильный учет
электронных корреляций необходим для четверных
перовскитов и мотивирует дальнейшие эксперимен-
тальные спектроскопические исследования.
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