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Теоретически исследован продольный электронный транспорт в многослойной сверхпроводниковой
(S) структуре SF1S1F2sN с двумя ферромагнитными (F) слоями и слоем нормального металла (N). Рас-
четы показали, что поворот намагниченности ферромагнитных слоев друг относительно друга позволяет
плавно изменять величину кинетической индуктивности структуры в несколько раз. Мы обнаружили
особенность электронного состояния структуры в области параметров системы, соответствующей ее пе-
реходу от состояния с устойчивой джозефсоновской фазой 0 к состоянию с устойчивой фазой π (0–π
переход). Эта особенность приводит к подавлению синглетной компоненты амплитуды спаривания и ро-
сту кинетической индуктивности всей структуры. Исследование влияния конечного продольного тока на
транспорт заряда показало, что разрушение сверхпроводимости в разных слоях происходит по очереди,
и на зависимости LK(J) есть несколько плато с почти постоянной величиной индуктивности.
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Введение. Сверхпроводниковая электроника
позволяет создавать ряд новых типов энергоэф-
фективных и быстродействующих элементов для
информационных и телекоммуникационных си-
стем, включая нейроморфные вычислители [1–3],
квантовые [4–6] и классические супер-компьютеры
[7, 8], а также совместимые с ними высокочувстви-
тельные детекторы [9]. При этом элементная база
для создания таких устройств не стоит на месте:
постоянно появляются концепции новых элементов,
основанных на новых физических принципах. Од-
ним из таких элементов стали устройства с большой
кинетической индуктивностью [10–13].

Индуктивность отвечает за реактивную компо-
ненту импеданса при переносе заряда, определяя
коэффициент пропорциональности между энергией
протекающего тока и квадратом его амплитуды. При
этом энергия запасается как в сопутствующем маг-
нитном поле (геометрическая компонента индуктив-
ности), так и в кинетической энергии носителей заря-
да (кинетическая компонента индуктивности). В ря-
де сверхпроводников с высоким удельным сопротив-
лением, таких как NbN и гранулированнный алюми-
ний GrAl [14–17], эта кинетическая компонента мо-
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жет на порядки превышать геометрическую индук-
тивность, что позволяет получать компактные эле-
менты на чипе с индуктивностями порядка нано- и
микрогенри. Использование таких элементов может
обеспечить прогресс в борьбе за масштабируемость
цифровых и аналоговых сверхпроводниковых схем,
поскольку позволит уменьшить размеры квантую-
щих контуров быстрой одноквантовой (SFQ – Single
Flux Quantum) логики. Кроме того, геометрическая
компонента индуктивности в таких цепях будет ма-
ла, что позволяет значительно уменьшить паразит-
ные наведенные токи, возникающие из-за взаимной
индукции.

В то же время в ряде случаев подобные элемен-
ты кинетической индуктивности проявляют нели-
нейные свойства, что позволяет управлять харак-
терными частотами сверхпроводниковых цепей с по-
мощью задания тока смещения, нагрева или прило-
жения электрического поля [18, 19]. На основе дан-
ных эффектов возможно реализовать смещение резо-
нансной частоты составных элементов слаботочных
сверхпроводниковых устройств, создавать парамет-
рические усилители [20–24] и детекторы [25–27]. Так-
же сейчас существует интерес к конструированию
элементов с возможностью энергонезависимой под-
стройки индуктивности в широком диапазоне ее зна-
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чений в составе сверхпроводниковых синапсов, ней-
ронов и роутеров [28]. В данной работе мы предлага-
ем концепцию экспериментальной реализации тако-
го элемента – энергонезависимого переключателя на
основе ферромагнитного спинового вентиля [29–36].

Работа устройства основана на использовании
спин-триггерного эффекта [37, 38], суть которого за-
ключается в переводе тонкого сверхпроводниково-
го s-слоя, подавленного обратным эффектом близо-
сти со стороны ферромагнетика и нормального ме-
талла, в собственное сверхпроводящее состояние за
счет проникновения парных корреляций со стороны
объемного сверхпроводника S – источника куперов-
ских пар (см. рис. 1). В зависимости от угла разо-

Рис. 1. (Цветной онлайн) (a) – Эскиз SF1S1F2sN струк-
туры с управляемой кинетической индуктивностью.
(b) – Схематическое изображение расположения эле-
мента с управляемой кинетической индуктивностью на
чипе между двумя широкими сверхпроводниковыми
линиями

риентации векторов намагниченности ферромагнит-
ных слоев спинового вентиля F1s1F2, расположенно-
го между источником S и слоем-триггером s, вен-
тиль либо пропускает, либо разрушает парные корре-
ляции, что позволяет управлять состоянием s-слоя.
При этом открытие вентиля приводит к переходу
слоя-триггера s в сверхпроводящее состояние, что,
в свою очередь, порождает резкий рост количества
сверхпроводящих носителей внутри низкоомного ме-
таллического слоя N за счет эффекта близости. В
том случае, когда такой N-материал обладает малым
удельным сопротивлением и большой длиной коге-
рентности, его кинетическая индуктивность в прок-
симизированном состоянии оказывается существен-
но меньше кинетической индуктивности остальных

слоев многослойной структуры. В силу этого прок-
симизация N-пленки должна сопровождаться суще-
ственным перераспределением транспортного про-
дольного тока в F1s1F2-вентиле и его концентрацией
в N-материале.

В данной работе мы теоретически исследуем про-
блему управления кинетической индуктивностью в
подобной структуре за счет плавного изменения уг-
ла разориентации векторов намагниченности ферро-
магнитных слоев; существенно новым в этом рас-
смотрении также является учет влияния продольно-
го тока конечной величины на свойства такой струк-
туры.

Модель. На рисунке 1 схематически представле-
на исследуемая SF1S1F2sN-структура. Она состоит
из S-электрода, F1S1F2-обменного клапана и сверх-
проводящего s-слоя, находящегося в контакте с низ-
коомным нормальным металлом (N). Предполагает-
ся, что условие грязного предела выполняется во
всех материалах. Тогда SF1S1F2sN-система будет
описываться уравнениями Узаделя:

Dp∇(ĝR∇ĝR)− [ωτ3, ĝ
R] + [ihpσ, ĝ

R] + [∆pτ1, ĝ
R] = 0,

(1)
в которых Dp = 2πTcξ

2
p – коэффициент диффузии

p-го слоя, ξp, ρp – его диффузная длина когерентно-
сти и удельное сопротивление соответственно, ω =

= πT (2n+1) – мацубаровские частоты, T – темпера-
тура системы, Tc – критическая температура сверх-
проводников, образующих многослойную SF1S1F2sN
структуру. Запаздывающая функция Грина ĝR =

= ĝτ3 + f̂τ1 представима в виде суммы нормальной
ĝ = gσ0 и аномальной f̂ =

∑3
i=0 fiσi составляющих,

τi, σi – матрицы Паули в квазичастичном (Намбу)
и спиновом пространстве соответственно. На грани-
цах между слоями использовались граничные усло-
вия Куприянова–Лукичева [39]:

2γBpqĝ
R
p ∂xĝ

R
p = [ĝRp , ĝ

R
q ]. (2)

γBpq = RBpqABpq/ρpξp – параметр подавления на
границе между p-м и q-м слоями, RBpq и ABpq –
сопротивление и площадь соответствующего интер-
фейса. Условие самосогласования для сверхпроводя-
щего параметра порядка ∆, отличного от нуля толь-
ко в сверхпроводщих слоях, представимо в виде:

∆ ln
T

Tc
= πT

+∞
∑

ω=−∞

(

∆

|ω| − f0

)

. (3)

Мы считаем, что ферромагнетики имеют однодомен-
ную структуру с векторами намагниченности M1,2,
лежащими в 0zy-плоскости. Следовательно, векто-
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Рис. 2. (Цветной онлайн) Пространственные зависимости при разных значениях углов между намагниченностями фер-
ромагнетиков (θ = 0, 0.35π, π соответствуют черная сплошная, красная точечная, синяя штрихованная линии) для:
(a) – синглетной компоненты амплитуды спаривания f0; (b), (c) – триплетных компонент f1, f2; (d) – обратного
квадрата лондоновской глубины проникновения λ−2. Голубыми областями обозначены слои F1,2 ферромагнетиков, зе-
леным – N нормального металла, белым – сверхпроводников. Параметры SF1S1F2sN-структуры: dS = 5ξ, dF1 = 0.5ξ,
dS1 = 0.2ξ, dF2 = 0.6ξ, ds = 4.4ξ, dN = 5ξ, ξN = 10ξ, ρN = 0.1ρ, h = 10TC , T = 0.5TC , γB = 0.3

ра обменного взаимодействия h1,2 отличные от нуля
только в F-слоях, определяются следующим образом:

h1 = hy cos θ + hz sin θ, h2 = hz. (4)

Предполагается, что материальные параметры у
сверхпроводящих и ферромагнитных слоев одинако-
вы, т.е. ξS = ξF = ξ, ρS = ρF = ρ, а параметры
низкоомного металла, ξN и ρN , могут от них отли-
чаться.

Кинетическая индуктивность SF1S1F2sN струк-
туры определялась выражением:

LK

L0
K

=
ξ

λ20

[

∫ d

0

λ−2(x)dx

]−1

. (5)

Здесь L0
K = (µ0Xλ

2
0)/(ξW ), λ0 = 2πµ0Tcρ

−1, µ0 –
проницаемость вакуума, X , W , d – ширина, высота и
суммарная толщина SF1S1F2sN-структуры соответ-
ственно. Обратный квадрат лондоновской глубины
проникновения определялся как:

λ−2(x) = λ−2
0

Tρ

TCρ(x)

∑

ω>0

Re(f2(x)), (6)

где f2(x) = f2
0 (x) − f2

1 (x) − f2
2 (x).

Краевая задача (1)–(4) решалась численно ите-
рационным способом. Найденные в результате рас-
четов координатные зависимости аномальных функ-
ций Грина были использованы для вычисления иско-
мой индуктивности в соответствии с выражениями
(5), (6).

Электронная структура. Результаты расчетов
электронной структуры в рамках уравнений (1)–(6)
приведены на рис. 2 для следующего набора парамет-
ров многослойной SF1S1F2sN-структуры: dS = 5ξ,
dF1 = 0.5ξ, dS1 = 0.2ξ, dF2 = 0.6ξ, ds = 4.4ξ, dN = 5ξ,
ξN = 10ξ, ρN = 0.1ρ, h = 10TC , T = 0.5TC , γB = 0.3.

Представленные на рис. 2a–c пространственные
зависимости амплитуд спаривания fi(x) и квадра-
та обратной глубины проникновения λ−2(x) (рис. 2d)
для разных направлений векторов намагниченности
F-слоев демонстрируют принцип работы исследуе-
мого спинового вентиля. Амплитуды спаривания в
области толстого левого сверхпроводника, S, сла-
бо зависят от направлений намагниченности. При
этом амплитуды спаривания f0 и f1 в тонком s-слое
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увеличиваются в несколько раз при переключении
из состояния с параллельными векторами намагни-
ченностей (Р) в “антипараллельное” (АР) состоя-
ние за счет более эффективной проксимизации че-
рез магнитную многослойку. В свою очередь, появле-
ние сверхпроводимости в s-слое приводит к прокси-
мизации нормально металлического N-слоя, в кото-
ром появляется заметная амплитуда спаривания f0,
несмотря на его значительную толщину dN = 5ξ,
превосходящую размер находящейся с ним в кон-
такте сверхпроводящей пленки. Более того, расчет
пространственного распределения квадрата обрат-
ной глубины проникновения λ−2(x), по сути экви-
валентного пространственному распределению про-
дольного сверхтока по структуре, показывает, что
в АР-конфигурации вклад нормального металла в
λ−2(x) оказывается сопоставимым с вкладом от объ-
емных сверхпроводников. В P-конфигурации векто-
ров намагниченности эффект близости между S- и s-
слоями оказывается подавленным. В результате это-
го амплитуда спаривания f0 в s- и N-слоях оказы-
вается в разы меньше. Таким образом, изменение
взаимной ориентации векторов намагниченности в
SF1S1F2sN структуре позволяет изменять простран-
ственное распределение глубины проникновения по-
ля и, соответственно, полную эффективную индук-
тивность структуры.

Стоит отметить, что возможность формирования
π-состояния в джозефсоновской SF1S1F2s структу-
ре не приводит к значительному подавлению сверх-
проводимости в s-слое. В P-конфигурации векторов
намагниченности F-пленок и при параметрах, пред-
ставленных на рис. 2, компоненты амплитуды спари-
вания f0 в S- и s-слоях имеют разные знаки (так
называемое 0−π состояние). Однако это не мешает
проявлению триггерного эффекта и формированию
собственной сверхпроводимости в s-слое.

В области параметров, соответствующей 0−π пе-
реходу, может наблюдаться дополнительное подав-
ление сверхпроводимости, типичное для структур
с тонкими сверхпроводниковыми слоями. Для рас-
сматриваемой структуры мы можем реализовать
0−π переход путем поворота одного из векторов на-
магниченности на конечный угол θ = 0.35π. При та-
ком значении угла разориентации намагниченностей
θ амплитуда спаривания в s-слое подавляется пол-
ностью. В этой области параметров спиновый вен-
тиль оказывается топологически закрыт, что приво-
дит к полному подавлению сверхпроводимости в sN
бислое. Однако данный эффект реализуется лишь в
узком диапазоне параметров при малых толщинах
s-слоя, близких к критической толщине.

Наличие N-слоя и его характеристики также
значительно влияют на величину кинетической ин-
дуктивности структуры. Чтобы продемонстрировать
данный эффект, мы провели расчеты электронной
структуры рассматриваемой многослойки для раз-
ных параметров нормального слоя и провели срав-
нение кинетической индуктивности в параллельной
и антипараллельной конфигурациях вентиля. На ри-
сунке 3 представлена разность кинетической индук-
тивности в P- и AP-конфигурациях намагниченно-
сти δLK = LP

K − LAP
K для SF1S1F2s(N)-структуры

как функция толщины слоя триггера, s, для разных
типов нормально-металлического покрытия. Дан-
ная величина удобна для оценки величины спин-
вентильного эффекта в многослойной структуре с
учетом влияния используемых материалов на кри-
тическую толщину s-слоя.

Рис. 3. (Цветной онлайн) Зависимость разности кине-
тических индуктивностей в P- и AP-ориентациях δLK

от толщины s-слоя ds для разных толщин и удельных
сопротивлений нормального металла. Черная сплош-
ная линия соответствует базовой SF1S1F2s структуре
без покрытия нормальным слоем; красная штрихован-
ная линия – случаю тонкого низкоомного N-слоя; си-
няя пунктирная линия – случаю толстого низкоомно-
го N-слоя; зеленая точечная линия – случаю толсто-
го N-слоя с сопротивлением, как у всех материалов в
системе. Параметры SF1S1F2sN структуры: dS = 5ξ,
dF1 = 0.5ξ, dS1 = 0.2ξ, dF2 = 0.6ξ, ξN = 10ξ, h = 10TC ,
T = 0.5TC , γB = 0.3

Черная сплошная линия на рис. 3 показывает из-
менение кинетической индуктивности для базовой
структуры без покрытия нормальным слоем. При
малых толщинах сверхпроводящего s-слоя ds его соб-
ственная сверхпроводимость оказывается подавлен-
ной во всем диапазоне углов разориентации векторов
намагниченности θ. В результате изменение θ слабо
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влияет на величину общей кинетической индуктив-
ности.

В обратном пределе очень больших ds s-слой на-
оборот достаточно толст, чтобы переходить в соб-
ственное сверхпроводниковое состояние вне зависи-
мости от того, есть ли подпитка парными корреля-
циями со стороны сверхпроводника источника S.

Наиболее эффективно спин-вентильный эффект
проявляется в промежуточном интервале толщин
2ξ < ds < 4ξ. В этом случае в системе реализуется
спин-триггерный эффект, заключающийся в перехо-
де s-слоя в собственное сверхпроводящее состояние
только при наличии подпитки со стороны сверхпро-
водника источника S при открытом спиновом венти-
ле. В этом случае изменение полной кинетической
индуктивности структуры δLK при перемагничива-
нии вырастает в 3–4 раза относительно предельных
случаев больших и маленьких толщин ds.

В свою очередь добавление нормально-
металлического слоя N поверх сверхпроводника
s может в несколько раз усилить спин-вентильный
эффект в окрестности максимума зависимости
δLK(ds). На рисунке 3 показана завимость δLK(ds)

для случая использования материала с высокой
длиной когерентности ξN = 10ξ и удельным сопро-
тивлением, как у сверхпроводника ρN = ρ (зеленая
точечная линия). Использование такого материала
слабо влияет на критическую толщину сверхпровод-
никового слоя триггера ds, при которой достигается
максимум зависимости, зато увеличивает амплитуду
максимума δLK больше, чем в полтора раза.

Использование низкоомного нормального ме-
талла с ρN = 0.1ρ позволяет увеличить спин-
вентильный эффект еще сильнее. Синей пунктирной
линией показана зависимость δLK(ds) для ρN = 0.1ρ

и толстого нормального слоя dN = 5ξ. При этом
эффективное подавление сверхпроводника s за счет
обратного эффекта близости со стороны N слоя
тоже увеличивается, что приводит к смещению мак-
симума зависимости δLK(ds) к новой критической
толщине s-слоя большей чем 4ξ.

Уменьшение толщины нормального слоя до dN =

= ξ (красная пунктирная линия) позволяет ослабить
данный эффект, но одновременно ведет и к ослабле-
нию спин-вентильного эффекта.

Зависимость кинетической индуктивности LK от
угла разориентации векторов намагниченности фер-
ромагнитных слоев θ продемонстрирована на рис. 4
для структуры с параметрами нормального слоя
dN = 5ξ, ρN = 0.1ρ и разными толщинами s-слоя.
Фактически, данный рисунок является детализаци-
ей синей пунктирной кривой на рис. 3.

Рис. 4. (Цветной онлайн) Зависимость кинетической
индуктивности LK от угла разориентации намагни-
ченностей θ для разных толщин s-слоя. Параметры
SF1S1F2sN-структуры: dS = 5ξ, dF1 = 0.5ξ, dS1 = 0.2ξ,
dF2 = 0.6ξ, dN = 5ξ, ξN = 10ξ, ρN = 0.1ρ, h = 10TC ,
T = 0.5TC , γB = 0.3

Видно, что при маленьких толщинах ds = 3ξ за-
висимость LK от угла θ практически отсутствует
(черная линия на рис. 4). Здесь, как в P, так и в
AP ориентациях собственная сверхпроводимость в s-
слое мала, а величина общей нормированной индук-
тивности близка к единице, что соответствует кине-
тической индуктивности слоя источника S.

Увеличиние толщины s-слоя в диапазоне ds =

= 4−4.6ξ (красная, синяя, зеленая и оранжевые ли-
нии) приводит к формированию в нем собственной
сверхпроводимости и падению общей индуктивности,
что происходит раньше в AP конфигурации и позже
в P-направлении намагниченности.

При этом зависимость LK(θ) оказывается нели-
нейной: ее максимум в широком диапазоне толщин
наблюдается при θ ≈ 0.35π, что соответсвует точ-
ке 0–π перехода между s и S-слоями. В этом слу-
чае, сверхпроводимость s-слоя оказывается дополни-
тельно подавлена фактом 0-π перехода, что приво-
дит к дополнительному усилению спин-вентильного
эффекта. Тем не менее данный эффект ослабевает
по мере увеличения толщины сверхпроводникового
s-слоя до значений, значительно превышающих кри-
тическую. При толщинах ds > 5ξ индуктивность сла-
бо зависит от угла θ), а 0–π переход происходит рез-
ким скачком, слабо влияя на измеряемые параметры
структуры.

Протекание продольного тока. Задание ко-
нечного продольного сверхтока вдоль многослойной
структуры (вдоль оси 0z) может значительно повли-
ять на величину индуктивности и распределение то-
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ков между слоями из-за эффекта подавления сверх-
проводимости протекающим по структуре током.

Для оценки этих эффектов, мы модифицирова-
ли уравнения (1)–(5) по аналогии с работами [19, 40–
43], представив потенциал спаривания и компоненты
ампулитуды спаривания в виде ∆(x, z) = ∆(x)eizq и
fi(x, z) = fi(x)e

izq соответственно, где q – не зави-
сящий от координаты x градиент фазы параметра
порядка вдоль оси 0z.

В этом случае уравнение (1) сохраняет свой вид с
точностью до замены в нем мацубаровской частоты
ω на ω+Dpq

2g/2. При таком подходе распределение
плотности тока j(x) по толщине структуры опреде-
ляется выражением

j(x) =
2πT

eρ(x)
q
∑

ω>0

Re(f2(x)) =
2πTCλ

2
0

eρλ2(x, q)
q, (7)

а суммарный транспортный ток J находится посред-
ством интегрирования выражения (7) по суммарной
толщине структуры d :

J =W

∫ d

0

j(x)dx. (8)

При выводе выражений (7), (8) мы преполагали, что
суммарная толщина всех слоев структуры d =

∑

p dp
значительно меньше лондоновской глубины проник-
новения λ0, а ширина полоски значительно меньше
величины λ20/d. Помимо этого, мы пренебрегали вли-
янием магнитных полей рассеяния ферромагнети-
ков, т.е. считали, что q есть константа, независящая
от пространственных координат. Таким образом, по-
сле интегрирования в (8) и подстановки выражения
для кинетической индуктивности (5) получается вы-
ражение, фактически являющееся альтернативным
определением кинетической индуктивности LK :

qξ =
LK(q)

L0
K

J

J0
, (9)

где J0 = 2πTCW/eρ – нормировка тока.
Для решения задачи об определении зависимо-

сти кинетической индуктивности от фазы необходи-
мо получить соотношение между градиентом фазы
и током q(J). Данная проблема решалась итераци-
онным способом.

Сначала по формулам (6), (5) рассчитывались за-
висимость λ−2(x) и величина LK при нулевом транс-
портном токе. На их основе из соотношения (9) для
заданного тока J определялось значение градиента
фазы параметра порядка q в первом приближении.

После подстановки получившегося на предыду-
щем шаге значения q в уравнение Узаделя опреде-
лялось распределение λ−2(x, q) и величина LK(q) в

следующей итерации и по формуле (9) уточнялось
значение q. Итерационный процесс по q заканчивался
при достижении относительной точности 10−4. По-
лученное в итоге значение q(J) использовалось для
расчета зависимости LK(J) в рамках модицифиро-
ванного уравнения Узаделя.

Рис. 5. (Цветной онлайн) (a) – Зависимость кинетиче-
ской индуктивности LK от тока смещения J для P- и
AP-конфигураций намагниченности структуры (крас-
ная штриховая и черная сплошная кривые соответ-
ственно). На вставке показана эквивалентная зависи-
мость дифференциальной индуктивности Ldif

K (J). (b) –
Пространственное распределение обратного квадрата
лондоновской глубины проникновения λ−2 для AP-
конфигурации намагниченностей структуры при раз-
ных величинах тока смещения, отмеченных звездочка-
ми на панели (а). Параметры SF1S1F2sN-структуры:
dS = 5ξ, dF1 = 0.5ξ, dS1 = 0.2ξ, dF2 = 0.6ξ, ds = 4.4ξ,
dN = 5ξ, ξN = 10ξ, ρN = 0.1ρ, h = 10TC , T = 0.5TC ,
γB = 0.3

На рисунке 5a показана зависимость кинетиче-
ской индуктивности SF1S1F2sN структуры от вели-
чины тока J для P- и AP-взаимной ориентаций век-
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торов намагниченности F-пленок (красная штрихо-
вая и черная сплошная кривые соответственно). Вид-
но, что зависимости имеют два плато со слабым из-
менением LK(J) и переходную область между ни-
ми с более быстрым подъемом. При больших токах
J ≈ 0.13 − 0.14J0 начинается процесс разрушения
куперовских пар в основном электроде S, что приво-
дит к исчезновению парных корреляций в структу-
ре в целом и появлению расходимости на рассчиты-
ваемой зависимости для индуктивности структуры,
переходящей в резистивный режим. При этом в AP-
конфигурации критическое значение тока распари-
вания оказывается больше, что связано с более сла-
бым подавлением сверхпроводимости в S-электроде
за счет обратного эффекта близости по сравнению
со случаем P-конфигурации намагниченности.

Эффективная ступенька на зависимости LK(J)

связана с разрушением сверхпроводимости в бислое
sN по мере увеличения тока. При этом ступенька яр-
че проявлена в случае AP-намагниченности из-за то-
го, что в параллельном случае сверхпроводимость в
sN бислоя сильно подавлена даже в отсутствии то-
ка. Стоит отметить, что такое свойство обусловлено
подбором параметров структуры для эффективного
управления полной индуктивностью изменением на-
магниченности в отсутствии тока.

На нижнем плато зависимости LK(J) для AP-
конфигурации ток распределен между S и sN сло-
ями. По мере увеличения тока до 0.07J0 происходит
подавление сверхпроводимости в sN бислое, что при-
водит к значительному изменению распределения то-
ка в структуре. Для демонстрации этого эффекта
на рис. 5b показано пространственное распределение
обратного квадрата глубины проникновения λ−2(x),
которое в соответствии с формулой (7) эквивалент-
но пространственному распределению тока j(x) по
структуре.

На черной сплошной кривой на рис. 5b видно,
что при нулевом токе суммарное соотношение λ−2(x)

между S-электродом и sN-частью примерно одина-
ковое. Однако, сверхпроводимость в s-слое являет-
ся более слабой, чем в S-электроде, вследствие че-
го увеличивающийся ток будет сильнее разрушать
сверхпроводящие корреляции в sN-части. В резуль-
тате, в диапазоне токов от 0 до ∼ 0.05J0 величина
λ−2(x) заметно уменьшается в области sN бислоя, а
ее величина в S-электроде, напротив, остается прак-
тически неизменной. Далее, в переходной области
(0.05−0.07J0) происходит окончательное разруше-
ние сверхпроводимости в sN-части, и кинетическая
индуктивность структуры полностью определяется
состоянием толстого S-слоя. Дальнейший рост LK

связан с разрушением сверхпроводимости непосред-
ственно S-электрода, где в диапазоне 0.07−0.14J0 на-
блюдается постепенное уменьшение амплитуды спа-
ривания и, соответственно, величины λ−2(x).

Вышеописанное поведение находится в соответ-
ствии с результатами работ [19, 43–45], где распари-
вание токового канала в слое низкоомного металла
происходит при меньших токах, чем в слое объем-
ного сверхпроводника. Это означает, что в опреде-
ленном интервале заданных в структуру токов воз-
можно разрушение транспорта только в sN бислое
и сохранение транспортных свойств источника купе-
ровских пар S. При этом в данной работе мы не рас-
сматриваем случай критических параметров, разо-
бранный в [19, 43–45], что не позволяет выделить эф-
фект “распаривания” в N-слое. Вместо этого sN бис-
лой фактически выступает единым элементом струк-
туры с меньшей критической температурой и крити-
ческим током, чем у толстого S-электрода, однако об-
ладающим низкой удельной индуктивностью за счет
малого удельного сопротивления металла.

Необходимо отметить, что кроме определения ин-
дуктивности в виде коэффициента пропорциональ-
ности между градиентом фазы и полным током час-
то [19, 41] используется дифференциальная кинети-
ческая индуктивность

Ldif
K = J0L0

K

dq

dJ
= LK +

dLK

dJ
J. (10)

Для сравнения эта величина показана на вставке к
рис. 5а для тех же параметров, что и для основно-
го графика. Она характеризуется тем, что в обла-
сти быстрого роста LK(J), связанного с разрушени-
ем сверхпроводимости в одном из слоев, на зависимо-
сти Ldif

K (J) может сформироваться дополнительный
максимум.

При этом в зависимости от конкретного экспе-
римента при измерении кинетической индуктивно-
сти может быть получена как ее полная величина,
так и дифференциальная. Например, в эксперимен-
те [46] на образец подается постоянный ток смещения
и исследуется влияние слабого переменного сигнала,
что соответствует величине Ldif

K . С другой стороны,
в экспериментах по исследованию пространственно-
го распределения тока в интерферометрах с мости-
ками Дайема [47, 48] определяется полная индуктив-
ность LK , поскольку в этом случае играет роль пол-
ная энергия системы. В более сложных процессах с
большим переменным током необходимо учитывать
нелинейность индуктивности в рамках решения за-
висящей от времени задачи [41], в которой распреде-
ление тока по структуре не является равновесным.
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Обсуждение. В рамках данной работы мы пока-
зали возможность управления кинетической индук-
тивностью Lk многослойной SF1S1F2sN структуры
посредством изменения угла разориентации векто-
ров намагниченности θ двух ферромагнитных слоев,
выступающих в роли спинового вентиля. Показано,
что при перемагничивании величина Lk может изме-
няться в несколько раз. При этом плавное измене-
ние угла разориентации намагниченностей в венти-
ле θ позволяет плавно и в широких пределах изме-
нять кинетическую индуктивность структуры. Дан-
ный эффект может быть интересен для устройств,
требующих непрерывной подстройки частоты входя-
щих в них сверхпроводниковых контуров.

В том случае, когда изменение угла θ в струк-
туре сопровождается переходом между 0- и π-
состояниями, зависимость кинетической индуктив-
ности Lk(θ) становится немонотонной. Она имеет
максимум в точке, соответствующей 0–π переходу.
Этот эффект можно использовать как для обна-
ружения 0–π перехода без использования фазово-
чувствительных схем [49–52], так и для усиления
спин-вентильного эффекта.

Возможный способ интеграции подобной струк-
туры в сверхпроводниковые цепи показан на рис. 1b.
В этом случае элемент кинетической индуктивности
представляет из себя узкую полоску по сравнению
с широкими элементами разводки из сверхпроводни-
ка, что позволяет обеспечить значительную кинети-
ческую индуктивность управляемого элемента. При
этом, конечно, в области затекания тока образуется
его концентрация, а распределение тока, показанное
на рис. 5b реализуется в центральной части струк-
туры. Однако процессы растекания тока происходят
на масштабах порядка толщины структуры, что со-
ответствует десяткам нанометров, а длина такой по-
лоски может составлять от 100 до 1000 нм, что позво-
ляет в первом приближении пренебрегать областями
неравномерного растекания тока.

В случае достаточно малых токов J < 0.02J0
структура может быть использована как подстраива-
емый линейный реактивный элемент, в котором при
перемагничивании изменяется кинетическая индук-
тивность. В этом диапазоне токов эффекты распари-
вания пренебрежимо малы.

Возможен и альтернативный способ применения
подобной структуры. При задании постоянного тока
смещения можно подстраивать разницу электронно-
го транспорта между P- и AP-конфигурациями. Так-
же можно управлять распределением тока по подоб-
ной структуре только током, не изменяя магнитную
конфигурацию системы.

Финансирование работы. Теоретическое опи-
сание и моделирование электронного транспорта
многослойной структуры выполнено при финансо-
вой поддержке Российского научного фонда (проект
# 22-79-10018, https://rscf.ru/project/22-79-10018/).

Исследование возможных применений и спосо-
бов интеграции многослойной структуры в схемы
выполнено при поддержке Министерства науки и
высшего образования Российской Федерации (согла-
шение 075-15-2024-632). Оптимизация численного ал-
горитма в окрестности точки распаривания выполне-
на А. Неило при поддержке Фонда развития теорети-
ческой физики и математики “БАЗИС”.
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