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Рассматривается интерферометр на основе киральных майорановских и дираковских мод в гибрид-
ном джозефсоновском контакте сверхпроводник/ферромагнетик/сверхпроводник на поверхности топо-
логического материала. Такие одномерные киральные моды участвуют в переносе джозефсоновского
тока, что приводит к необычному ток-фазовому соотношению. На ток оказывают влияние доменные
стенки в магнитной прослойке. Показано, что сверхток зависит от расстояния между доменными стен-
ками, а с другой стороны, он определяет взаимодействие между стенками и, как следствие, динамику
магнитного слоя.
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Майорановские нулевые моды активно изучают-
ся теоретически и экспериментально в связи с их
необычными физическими свойствами, в том чис-
ле нетривиальной обменной статистикой, и возмож-
ностью их использования для реализации топологи-
ческих квантовых вычислительных устройств [1–3].
Fu и Kane предложили реализовать их как краевые
моды в топологических джозефсоновских контактах
между сверхпроводящими пленками на поверхности
топологического изолятора [4, 5] и продемонстриро-
вали возникновение майорановских краевых состо-
яний. Транспортные свойства киральных краевых
мод, локализованных на границе, подробно анализи-
руются, в частности, для установления связи свойств
зарядово-нейтральных майорановских возбуждений
и электрического тока, доступного для эксперимен-
тального детектирования [6].

Фазово-чувствительные измерения в таких струк-
турах продемонстрировали эффект Джозефсона [7,
8], и их результаты согласуются с топологическими
свойствами контакта [9–11]. Проводятся дальнейшие
эксперименты, изучающие в том числе физику май-
орановских мод [12, 13].

Шапиро с соавторами [14] исследовали джозеф-
соновский ток в топологическом контакте с магнит-
ной прослойкой и доменными стенками в магнети-
ке. В такой структуре возникают Т-образные пере-
крестки с расщеплением дираковской моды на две
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майорановские или обратным слиянием. Был вычис-
лен джозефсоновский ток и показана его дробно-
периодическая зависимость от магнитного потока
Ааронова–Бома в петле интерферометра между до-
менными стенками, связанная с нелокальным харак-
тером куперовских пар в системе. В настоящей ра-
боте исследуется гибридизация нулевых мод на со-
седних доменных стенках и ее влияние на ток. Это
явление существенно для близких доменных стенок,
и представляет интерес описание переходного режи-
ма между случаями далеких [14] и близких стенок,
когда остается единственный домен. Полученные ре-
зультаты, с одной стороны, показывают влияние маг-
нитной структуры на сверхток. С другой стороны,
они демонстрируют, что сверхток также влияет на
магнитную динамику. Действительно, джозефсонов-
ская энергия в рассматриваемой системе зависит от
расстояния между доменными стенками, что опреде-
ляет их взаимодействие. Его следует принимать во
внимание при описании динамики магнитной струк-
туры.

Рассмотрим трехмерный сильный топологиче-
ский изолятор с щелью в объемном спектре и
бесщелевым спектром поверхностных состояний. По-
верхностные состояния описываются дираковским
гамильтонианом ĤTI = −iv(σz∂z + σx∂x), где σi –
спиновые матрицы Паули, а v – скорость поверхност-
ных мод. Сверхпроводниковые и магнитные пленки
на поверхности индуцируют соответственно сверх-
проводящие и магнитные корреляции в поверхност-
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ном слое благодаря эффекту близости, и гамильто-
ниан Боголюбова–де Жена принимает вид

Ĥ =− ivτz(σz∂z + σx∂x)− σyM(x, z) (1)

+∆(x, z)τ+ +∆∗(x, z)τ− ,

где τ± = (τx ± iτy)/2 задают матрицы Паули
в боголюбовском пространстве.

На границе сверхпроводящего и магнитного доме-
на распространяется локализованная майорановская
подщелевая мода [4]
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с линейным спектром ε = vp при низких энергиях. В
то же время на доменной стенке между двумя маг-
нитными доменами с противоположными намагни-
ченностями ±M возникает дираковская подщелевая
мода
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с аналогичным спектром ε = vp.
В рассматриваемой структуре эти моды транс-

формируются друг в друга на Т-образных перекрест-
ках. В пренебрежении энергетической зависимостью
матрицы рассеяния, в общем случае для такого пе-
рекрестка она имеет вид [6]:
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а параметр α определяется геометрией перекрестка.
Аналогично для расщепления на таком пере-

крестке [6]
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В работе [14] исследован джозефсоновский кон-
такт, представляющий собой интерферометр, пока-
занный на рис. 1. На границе между сверхпроводя-

Рис. 1. (Цветной онлайн) В верхней части: джозефсо-
новский контакт на поверхности трехмерного тополо-
гического изолятора. Магнитная прослойка состоит из
трех доменов, разделенных доменными стенками. В
нижней части: вид сверху, майорановские моды (крас-
ные стрелки) локализованы на SM-границах, дираков-
ские моды (синие стрелки) на доменных стенках

щими контактами и магнитной прослойкой возни-
кают майорановские киральные моды, а на домен-
ных стенках между магнитными доменами кираль-
ные дираковские моды. Ток определяется процесса-
ми слияния майорановских мод и расщепления ди-
раковских мод на перекрестках. Он зависит от раз-
ности фаз между сверхпроводниками и магнитного
потока в петле интерферометра.

В настоящей работе исследуется сверхток в слу-
чае достаточно близких доменных стенок, когда ги-
бридизация граничных мод становится существен-
ной. Это происходит на расстояниях порядка магнит-
ной длины когерентности, которая определяет глу-
бину проникновения подщелевых состояний в объем
магнетика (3).

С физической точки зрения гибридизация под-
щелевых мод на двух доменных стенках может рас-
сматриваться как перерассеяние между двумя ки-
ральными модами. Ниже джозефсоновский ток вы-
числяется в формализме теории рассеяния, что обоб-
щает анализ в работе [14], дополняя его рассеянием
между дираковскими модами на доменных стенках.
Для упрощения рассмотрения и отделения процессов
слияния и расщепления на перекрестках от гибри-
дизации и рассеяния назад рассматривается модель,
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в которой гибридизация ограничена пространствен-
ной областью вдали от сверхпроводников. В прин-
ципе, это может быть реализовано, если магнитная
щель подавлена в достаточно узкой области и/или
две доменные стенки сближаются на небольшом про-
странственном интервале. В общем случае для опре-
деления матрицы рассеяния, связанной с такой ги-
бридизацией, следует решать задачу на всей длине
доменных стенок. Такой анализ будет произведен в
последующей работе, однако на наш взгляд рассмат-
риваемая модель отражает физику системы.

В таком подходе задача разделяется на две части,
вычисление индуцированной гибридизацией матри-
цы рассеяния между дираковскими модами на до-
менных стенках и использование этой матрицы для
вычисления джозефсоновского тока. Настоящая ра-
бота посвящена второй подзадаче, описанию транс-
порта с использованием наиболее общей матрицы
рассеяния, выраженной через амплитуды отражения
r и прохождения t. В дальнейшем их зависимость от
энергии в интересующем нас интервале предполага-
ется несущественной.

Определим майорановские моды χl, ηl, γl на ле-
вом и χr, ηr, γr на правом берегу контакта, см. рис. 2.
Для входящих мод подразумевается равновесное рас-
пределение,

〈

χ†
l (ε)χl(ε)

〉

=
〈

χ†
r(ε)χr(ε)

〉

= v−1nF (ε) , (8)

с равными температурами (ср. рассмотрение тер-
моэлектрического эффекта в отсутствие гибридиза-
ции [15]).

Перейдем к рассмотрению дираковских мод ψal,
ψar, ψbr, ψbl, локализованных на доменных стенках
в магнитной прослойке. Вызванное гибридизацией
рассеяние описывается матрицей

(

ψar

ψbl

)

=

(

ta rr

rl tb

)(

ψal

ψbr

)

, (9)

где ψal, ψbl обозначают дираковские моды около ле-
вого берега контакта, а ψar, ψbr – около правого,
см. рис. 2. Учитывая пространственную зависимость
мод, для рассеяния между модами на берегах кон-
такта получаем ta/b(ε) = eiεL/vta/b и rr/l(ε) =

= e2iεLr/l/vrr/l, где Ll/r – эффективное расстояние
от левого/правого берега до области рассеяния.

Будем также предполагать, что магнитный поток
проходит сквозь домен −M магнитной прослойки
вдали от области рассеяния. Это упрощает рассмот-
рение, но не должно принципиально влиять на инте-
ресующие нас явления. Определим фазы Ааронова–
Бома φl и φr (потоки, умноженные на 2π и деленные

Рис. 2. (Цветной онлайн) Киральные фермионные кра-
евые моды. Красными стрелками отмечены майоранов-
ские моды χl, ηl, γl, χr, ηr, γr на SM границах, сини-
ми – дираковские на доменных стенках между домена-
ми +M и −M . Для мод χl, ηl, γl координата отсчитыва-
ется от левого верхнего перекрестка, а для χr, ηr, γr –
от правого нижнего. φl,r обозначают фазы Ааронова-
Бома по обе стороны области рассеяния, отмеченной
символом S

на квант потока Φ0) слева и справа от области рас-
сеяния. Полная фаза Ааронова-Бома в интерферен-
ционной петле равна φAB = φl + φr.

Изучим теперь влияние рассеяния на джозефсо-
новский ток. Ток можно вычислить как разность
вкладов дираковских мод вдали (по левую или пра-
вую сторону) от области рассеяния:

j =
〈

ψ†
alψal

〉

−
〈

ψ†
blψbl

〉

. (10)

Дираковские моды можно выразить через майора-
новские,

ψal(ε) = ei(α−Φ/4) ηl(ε) + iχl(ε)√
2

, (11)

ψar(ε) = e−i(α′−Φ/4)e−iεW/v ηr(ε)− iγr(ε)√
2

, (12)

ψbl(ε) = e−i(α′+Φ/4)e−iεW/v ηl(ε)− iγl(ε)√
2

, (13)

ψbr(ε) = ei(α+Φ/4) ηr(ε) + iχr(ε)√
2

, (14)

что приводит к следующему выражению для опера-
тора тока:
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η†l χl − χ†
l ηl

)

+
i

2

(
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)

. (15)

Здесь фазы ±Φ/2 сверхпроводящих контактов вос-
становлены при помощи калибровочного преобразо-
вания.

Майорановские моды с энергиями ±ε не являют-
ся независимыми, η(−ε) = η†(ε) и отвечают одному и
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Рис. 3. (Цветной онлайн) Траектории рассеяния меж-
ду майорановскими краевыми модами, отвечающие ам-
плитудам Al, Bl, Cl, Dl. Аналогичные траектории на
правом контакте соответствуют Ar, Br, Cr, Dr

тому же возбуждению. По этой причине удобно ра-
ботать с суммой спектральной плотности тока при
противоположных значениях энергии:

jε + j−ε = Im
〈[

χl, η
†
l

]〉

+ Im
〈[

γl, η
†
l

]〉

. (16)

Поскольку левые и правые входящие моды χl и χr

не скоррелированы, их вклады в полный ток можно
вычислять независимо (вклад левых/правых входя-
щих мод мы далее обозначаем с помощью верхних
индексов (l/r)). При рассмотрении вклада от пра-
вых входящих мод ток на левом берегу течет только
через нижний Т-образный перекресток, так как на
верхнем заряженного возбуждения в таком случае
образоваться не может (с формальной точки зрения
мы оставляем только вклад от χr в ηl, и первое сред-
нее в (16) обращается в ноль). В результате получаем
следующее выражение для спектральной плотности
тока:

jε + j−ε = Im
〈[

γ
(r)
l , η

(r)†
l

]〉

− Im
〈[

γ(l)r , η(l)†r

]〉

, (17)

Полный ток при этом принимает вид

j =
e

~

∫ +∞

−∞
dε · nF (ε)

(

J (r)
ε − J (l)

ε

)

(18)

и содержит вклады от левых и правых входящих
мод.

Чтобы выразить все майорановские моды через
две входящие, мы рассматриваем рассеяние вдоль
разных траекторий и получаем уравнения самосогла-
сования для петель на рис. 3:

ηl = Alχl +Blχr + Clηr +Dlηl , (19)

ηr = Arχr +Brχl + Crηl +Drηr . (20)

Чтобы их получить, можно мысленно разделить от-
резок моды η на две части и выразить входящие η
через χ и выходящие.

Амплитуды перехода по путям на рис. 3 имеют
вид

Al = −rl(ε)ei
εW
v sin
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v sin
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2
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)

, (24)

Ar = −rr(ε)ei
εW
v sin

(
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)

, (25)

Br = −ta(ε)ei
εW
v sin

4α̃+ φAB − Φ

2
, (26)

Cr = ta(ε)e
i εWv cos

4α̃+ φAB − Φ

2
, (27)

Dr = rr(ε)e
i εWv cos

(

2α̃+ φr

)

, (28)

где введено обозначение 2α̃ = α + α′. Принимая во
внимание наши дальнейшие приближения и для про-
зрачности наших вычислений, эти выражения приве-
дены для случая симметричного по энергии рассея-
ния в магнитной прослойке, S∗(−ε) = S(ε), имеюще-
го место для уравнения (1).

Решая уравнения самосогласования и подставляя
полученные выражения для η и γ, находим спек-
тральную плотность тока:

J (r)
ε − J (l)

ε = Im

{[

−Cl +Al
Bl[1−Dr] + ClAr

[1−Dl][1−Dr]− ClCr
+

+Bl
Ar[1−Dl] + CrBl

[1−Dl][1−Dr]− ClCr

]

×

×
[

Bl[1−Dr] + ClAr

[1−Dl][1 −Dr]− ClCr

]∗

−

−
[

−Cr +Ar
Br[1−Dl] + CrAl

[1−Dl][1−Dr]− ClCr
+

+Br
Al[1−Dr] + ClBr

[1−Dl][1−Dr]− ClCr

]

×

×
[

Br[1−Dl] + CrAl

[1−Dl][1−Dr]− ClCr

]∗}

. (29)

Полный ток (18) получается из данного выражения
после умножения на функцию распределения Фер-
ми nF (ε) и интегрирования по энергиям. Как можно
было ожидать, в него через амплитуды A/D входят
фазы φl,r, что приводит к размытию периодичности
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по полной фазе Ааронова–Бома (см. работу [14]), вы-
званному гибридизацией.

В частных случаях полученный результат может
быть упрощен. При определенных значениях фаз
Ааронова–Бома φl,r амплитуды перехода по петлям
с участием рассеяния обращаются в ноль, Dl = Dr =

= 0. Это позволяет привести выражение (18) к сум-
ме по мацубаровским частотам. Для симметричного
случая (Ll = Lr = L/2) и φl +2α̃ = −(φr +2α̃) = π/2

получаем:

j = 4
e

~
πT t2 sinΦ ·

∞
∑

n=0

1

2eωn/ET − t2(1 + cosΦ)
. (30)

Для φl + 2α̃ = φr + 2α̃ = −π/2 получаем:

j = 4
e

~
πT t2 sinΦ ·

∞
∑

n=0

1

2eωn/ET + t2(1− cosΦ)
, (31)

где ET = ~v/2(L+W ) – энергия Таулесса. В пределе
нулевой температуры суммы заменяются интеграла-
ми, и формула (30) сводится к выражению

j(T = 0) = −2
e

~
ET sinΦ · ln

(

1− t2 1+cosΦ
2

)

1 + cosΦ
, (32)

а выражение (31) принимает вид

j(T = 0) = 2ET
e

~
sinΦ · ln

(

1 + t2 1−cosΦ
2

)

1− cosΦ
. (33)

Сделаем несколько замечаний. Во-первых, в от-
сутствие гибридизации, т.е. в пределе полного про-
хождения, t → 1, ток-фазовое соотношение (32)
имеет особенность [14] с логарифмической расходи-
мостью джозефсоновской индуктивности (dj/dΦ)−1

при Φ = 0. Выражение (32) описывает, как эта осо-
бенность размывается при наличии гибридизации.

Кроме того, обобщение расчетов на асимметрич-
ный случай Ll 6= Lr и на произвольные матрицы рас-
сеяния показывает, что результаты (30)–(33) остают-
ся неизменными. Наконец, в общем случае фазы α, α′

на левом и правом сверхпроводящем контакте мо-
гут различаться; обозначим соответствующие фазы
как αl, α′

l, αr, α′
r. Как показывает расчет, резуль-

таты при этом отличаются только сдвигом разности
фаз Φ 7→ Φ − αl + α′

l + αr − α′
r (см. [15] для случая

без гибридизации). Эта комбинация фаз набирается
в петле интерферометра при андреевском отражении
на обоих сверхпроводящих контактах. Такой сдвиг
разности фаз Φ приводит, в частности, к появлению
тока при Φ = 0, что соответствует так называемому
φ0-контакту [16].

Отметим, что джозефсоновская энергия, соответ-
ствующая выражениям (32), (33), может рассматри-
ваться как энергия взаимодействия доменных сте-
нок, а ее производная по расстоянию между ними
как сила. Полученные результаты могут в дальней-
шем использоваться для анализа динамики домен-
ных стенок в магнитной прослойке.

В работе проанализирован джозефсоновский ток
в интерферометре, образованном двумя доменными
стенками в магнитной прослойке между сверхпро-
водящими электродами с учетом гибридизации ки-
ральных фермионных состояний, локализованных на
стенках. С одной стороны, такой анализ описывает
влияние магнитной структуры на сверхток. С дру-
гой стороны, полученные результаты демонстриру-
ют эффективное взаимодействие доменных стенок.
Его следует учитывать при полноценном описании
динамики магнитной прослойки.

Авторы благодарны А. Шнирману за полезные
обсуждения.
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