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Для димерного ассоциата примесных ионов 63Cu2+ в монокристалле BaF2 в стационарных спектрах
электронного парамагнитного резонанса, записанных с использованием диэлектрического резонатора,
наблюдались необычные резонансные линии. Фаза этих линий была ортогональна фазе модуляции маг-
нитного поля. Мы связываем появление таких линий с особенностями спиновой динамики высокоспино-
вых электронных систем при резонансном взаимодействии с микроволновым электромагнитным полем.
При достаточно интенсивном резонансном возбуждении магнитных дипольных переходов магнитный
дипольный момент спиновой системы трансформируется в электрический квадрупольный момент, при
этом в спиновой системе происходит взаимодействие магнитного дипольного и электрического квадру-
польного осцилляторов. Одновременное возбуждение магнитных дипольных и электрических квадру-
польных резонансных переходов в диэлектрическом резонаторе спектрометра приводит к появлению
сдвинутых по фазе резонансных линий.
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Введение. В последнее время ядерные и элек-
тронные спины привлекают большой интерес как
естественные квантовые объекты, которые могут
служить материальной базой для реализации алго-
ритмов квантовых вычислений и квантовой памяти.
В частности, рассматриваются особенности реализа-
ции квантовых вычислений на основе высокоспино-
вых систем [1–4]. В этой связи большое значение име-
ет информация о физических процессах, происходя-
щих в высокоспиновых системах при возбуждении в
них резонансных переходов между различными спи-
новыми состояниями.

При описании динамики магнитного момента в
ядерном или электронном спиновом резонансе широ-
ко используются уравнения Блоха [5]. В этих уравне-
ниях квантово-механический спин S = 1/2 представ-
ляют в виде вектора с тремя линейными перемен-
ными Sx, Sy и Sz. В этом случае динамика спина,
без учета процессов релаксации, представлена клас-
сической картиной вращения магнитного момента в
пространстве таким образом, что конец вектора маг-
нитного момента перемещается вдоль траектории на
сферической поверхности (сфере Блоха). В теорети-
ческих работах [6–12] было показано, что для вы-
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сокоспиновых систем с величиной спина S > 1/2

эта простая модель не может полностью описать
спиновую динамику, и необходимо вводить спино-
вые переменные с более высокими степенями компо-
нент спинового момента. Для спина S = 1 достаточ-
но включить члены второго порядка, соответству-
ющие квадрупольному моменту. Такое мультиполь-
ное представление высокоспиновых систем являет-
ся обычным при описании свойств атомных ядер со
спином I > 1/2. В этом случае спиновый гамиль-
тониан, описывающий взаимодействие ядерного спи-
на с внешними полями, включает энергию взаимо-
действия ядерного магнитного момента с внешним
магнитным полем и энергию взаимодействия элек-
трического квадрупольного момента с градиентом
электрического кристаллического поля или включа-
ет квадратичные спиновые операторы сверхтонкого
взаимодействия. Для электронных спинов мульти-
польные степени свободы также использовались при
анализе свойств электронной оболочки примесных
парамагнитных центров в кристаллах [13], но это
скорее исключение, чем правило. В статье [12] бы-
ло теоретически показано, что при резонансном воз-
буждении высокоспиновой системы с величиной спи-
на S = 1 магнитный дипольный момент не сохраня-
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ется по абсолютной величине. При этом дипольный
момент спиновой системы преобразуется в квадру-
польный момент. В статье [14] мы использовали этот
вывод для объяснения причины появления резонанс-
ных линий аномальной формы в спектрах электрон-
ного парамагнитного резонанса (ЭПР) примесных
ионов Er3+ в монокристалле Y2SiO5. Ранее подобные
аномальные линии наблюдались также и для примес-
ных парамагнитных центров Ho3+ [15, 16] и Yb3+ [17]
в монокристаллах форстерита (Mg2SiO4). Эти ли-
нии наблюдались при записи спектров с использова-
нием диэлектрического резонатора ER4118MD5W1
(Bruker) и имели форму собственно резонансного по-
глощения вместо обычной производной резонансно-
го поглощения, характерной для стационарных спек-
тров ЭПР, записанных в режиме модуляции внешне-
го магнитного поля. В то же время при использо-
вании цилиндрического металлического резонатора
ER4122SHQ (Bruker) аномальные линии не наблю-
дались. Принципиальная разница между этими ре-
зонаторами состоит в том, что в металлическом ре-
зонаторе магнитная B1 и электрическая E1 компо-
ненты микроволнового поля пространственно разде-
лены, и на образец, находящийся на оси резонатора,
поле E1 не действует. В диэлектрическом резонато-
ре поле E1 присутствует во всем объеме внутренней
полости [18]. В статье [16] специальными исследова-
ниями было показано, что интенсивность резонанс-
ного взаимодействия микроволнового поля со спино-
вой системой не зависит от амплитуды E1. Поэтому
мы предполагаем, что аномальные линии появлялись
в результате взаимодействия градиента электриче-
ского поля E1 c динамическим электрическим квад-
рупольным моментом, созданными при возбуждении
магнитных дипольных переходов. Появления дина-
мического квадрупольного момента следует ожидать
только для высокоспиновых систем. Поэтому пред-
ставляло интерес сравнительное исследование низко-
спиновых и высокоспиновых парамагнитных центров
одинаковой природы в одном и том же образце. Для
этих экспериментов мы выбрали монокристалл BaF2,
легированный ионами 63Cu2+. Характерной особен-
ностью этого образца является самоорганизация ди-
мерных ассоциатов меди, благодаря чему даже при
небольшой концентрации примесных ионов концен-
трация димерных ассоциатов ионов меди сравнима с
концентрацией одиночных ионов.

Образец и условия эксперимента. Образцы
с одиночными ионами и димерными ассоциатами
ионов Cu2+ в монокристаллах BaF2 были получены
в два этапа. Сначала были выращены высококаче-
ственные нелегированные монокристаллы BaF2. За-

тем из выращенных кристаллов выкалывались ку-
сочки с двумя плоскопараллельными поверхностями.
Далее выколотый кусочек помещался между торца-
ми двух графитовых цилиндров, а между цилиндра-
ми и плоскими поверхностями образца помещалась
фольга из моно-изотопного 63Cu. Вся эта конструк-
ция была размещена в индукционной катушке уста-
новки для выращивания монокристаллов “Донец-1”.
Объем камеры выращивания был заполнен сме-
сью чистого гелия и некоторого количества продук-
тов разложения фторопласта. Графитовые цилин-
дры нагревались индукционным методом и нагре-
вали монокристалл BaF2 до высокой температуры,
близкой к температуре плавления. При этом проис-
ходила достаточно интенсивная диффузия ионов ме-
ди из фольги в кристалл. Образцы для измерений
размерами приблизительно 1.5× 1.5× 5мм3 отбира-
ли из заготовок, полученных таким методом.

Успех этого метода легирования объясняется вы-
соким коэффициентом диффузии примесных ионов
меди в BaF2 при высокой температуре. Эта диф-
фузия происходит через катионные позиции Ba2+ в
кристаллической решетке путем их временного заме-
щения. Вследствие эффекта Яна–Теллера ион Cu2+

имеет тенденцию смещаться от центра куба в направ-
лении оси симметрии четвертого порядка кристалли-
ческой структуры BaF2 [19, 20]. Это приводит к об-
разованию примесных комплексов с большим элек-
трическим дипольным моментом. В процессе диффу-
зии два таких комплекса могут оказаться в непосред-
ственной близости друг к другу. Благодаря взаимо-
действию двух электрических дипольных моментов
вероятность образования связанных пар ионов Cu2+

оказывается выше, чем вероятность их термического
распада.

В статье [20] было показано, что сверхтонкая
структура (СТС) и суперсверхтонкая структура
(ССТС) спектров ЭПР одиночных ионов меди
и димерных центров существенно различаются.
Ядерный спин изотопа 63Cu ICu = 3/2. Поэтому
СТС одиночного иона содержит (2I + 1) = 4 линии,
соответствующие разрешенным переходам между
электронно-ядерными уровнями с равными Iz.
СТС димерного ассоциата образуется в результате
взаимодействия двух электронных спинов с двумя
ядрами меди, и СТС должна состоять из 16 разре-
шенных переходов. ССТС на спектрах обусловлена
взаимодействием электронного спина Cu2+ со спи-
нами ядер фтора (IF = 1/2). Одиночный ион меди,
смещенный в результате эффекта Яна–Теллера к
одной из граней кубической решетки, эффективно
взаимодействует с 4 ядрами фтора, а электронные
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Рис. 1. Спектры ЭПР ионов 63Cu2+ в BaF2, записанные на частоте спектрометра 9.732 ГГц при различной мощности
микроволнового излучения, показанной над спектрами в левой части рис. 1a. Спектры ЭПР синфазные и ортогональ-
ные по фазе модуляции магнитного поля представлены на рис. 1a и b соответственно. Коэффициент масштабирования
спектров указан в круглых скобках. B0‖[100]. T = 20 К

спины димерного ассоциата взаимодействуют с 8 яд-
рами. Значительная разница СТС и ССТС спектров
ЭПР одиночного иона и димерного ассоциата поз-
воляет однозначно определить тип парамагнитного
центра.

Экспериментальные результаты и обсуж-

дение. Измерения спектров ЭПР проводились в
X-диапазоне частот на спектрометре ELEXSYS
E580 (Bruker) с диэлектрическим резонатором
ER4118MD5W1. Для измерения фазы сигналов ис-
пользовался режим квадратурного детектирования
по модуляции, при котором сигнал записывался
по двум каналам. В первом канале (синфазном)
измерялась амплитуда сигнала, совпадающего по
фазе с фазой модуляции магнитного поля, во втором
канале (ортогональном) регистрировался сигнал,
сдвинутый по фазе на 90 градусов.

На рисунке 1 представлены спектры ЭПР ионов
63Cu2+ в монокристалле BaF2 в зависимости от мощ-
ности микроволнового излучение P .

Видно, что интенсивности спектров одиночно-
го иона и димерного ассоциата по разному зави-
сят от мощности микроволнового излучения P . На
рисунке 2 представлены зависимости интенсивности
различных составляющих спектров от величины P .

Данные для одиночного иона и димерного ассоциа-
та нормализованы по амплитуде синфазного сигна-
ла, регистрируемого при минимальной мощности.

Рис. 2. Зависимость интенсивности линий в спектрах
ЭПР ионов Cu2+ в BaF2 от мощности микроволнового
излучения. Пустые и заполненные квадраты соответ-
ствуют синфазным спектрам одиночного иона и димер-
ного ассоциата соответственно. Заполненные треуголь-
ники соответствуют ортогональным спектрам димер-
ного ассоциата, линии соединяют экспериментальные
данные между собой
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Для одиночного иона амплитуда синфазных ли-
ний ЭПР в диапазоне микроволновой мощности
150 нВт < P < 15мкВт приблизительно пропорци-
ональна

√
P . Это область линейного отклика, где

Mz-составляющая спиновой намагниченности мало
отличается от равновесного значения M0 в отсут-
ствие резонансного микроволнового возбуждения.
При увеличении P зависимость интенсивности сиг-
нала от

√
P отклоняется от линейной. Это связано

с эффектом насыщения резонансного перехода, ко-
гда значение Mz становится меньше M0. Для ди-
мерного ассоциата ситуация существенно отличает-
ся. Синфазный сигнал пропорционален

√
P только

до P = 1.5мкВт. Затем с увеличением мощности ин-
тенсивность синфазных сигналов резко уменьшает-
ся. В то же время заметные сигналы димерного ас-
социата появляются на ортогональных спектрах. Ин-
тенсивность этих сигналов при P > 15мкВт превы-
шает интенсивность синфазных сигналов. Амплиту-
да ортогонального сигнала одиночного иона при лю-
бой мощности по меньшей мере на порядок меньше
амплитуды синфазного сигнала и нами не анализи-
ровалась. Мы считаем, что появление резонансных
линий димерного ассоциата с ортогональной фазой
связано с возбуждением в спиновой системе электри-
ческих квадрупольных переходов, которые возмож-
ны только для высокоспиновых систем.

Как для одиночного иона, так и для димерного
ассоциата, с увеличением мощности микроволнового
излучения происходит насыщение резонансных пе-
реходов. Однако порог мощности, при котором на-
чинается насыщение, для димерного ассоциата при-
мерно на два порядка ниже, чем для одиночного
иона. Природа этого различия могла бы быть свя-
зана с обсуждаемыми в данной работе особенностя-
ми возбуждения электрических квадрупольных пе-
реходов. Контрольные измерения процесса насыще-
ния резонансных переходов этого же образца при ис-
пользовании металлического цилиндрического резо-
натора, где электрические квадрупольные переходы
не возбуждаются, показали, что и в этом случае на-
сыщение резонансных переходов димерного ассоци-
ата также происходит при мощности, примерно на
два порядка меньшей, чем мощность, необходимая
для насыщения переходов одиночного иона. Вторая
причина может быть связана с различием вероятно-
сти резонансных переходов и релаксационных харак-
теристик димерного ассоциата и одиночного иона.
Уровень насыщения резонансных переходов в ЭПР-
спектроскопии определяется параметром q = ω2

1T1T2
[21]. Здесь ω1 = 1

~
gµBSxB1 – частота спиновой ну-

тации под действием магнитной составляющей резо-

нансного микроволнового поля B1, g – фактор спек-
троскопического расщепления, µB – магнетон Бора,
Sx – матричный элемент резонансного перехода меж-
ду двумя энергетическими уровнями спиновой систе-
мы со спином S, T1 и T2 – времена продольной и по-
перечной спин-решеточной и спин-спиновой релак-
сации соответственно. Для резонансного перехода с
изменением магнитного квантового числа ∆ms = ±1

величина матричного элемента определяется выра-
жением [22]

Sx(ms,ms + 1) =
√

S(S + 1)−ms(ms + 1).

Здесь S – полный эффективный электронный спин
парамагнитного центра, (S = 1/2 для одиночного
иона и S = 1 для димерного ассоциата), ms – про-
екция электронного спина на ось квантования. Для
переходов между спиновыми уровнями ms = ±1 и
ms = 0 димера меди, имеющего полный спин S = 1,
величина Sx в

√
2 раз больше, чем эта величина для

перехода между уровнями ms = +1/2 и ms = −1/2

одиночного иона со спином S = 1/2. Времена ре-
лаксации парамагнитных центров Cu2+ в BaF2 были
измерены в статье [20]. Оцифровкой данных, приве-
денных на рис. 13 статьи [20], было установлено что
при температуре 20 К время T1 ∼ 35мкс и ∼ 70 мкс
для одиночного иона и димерного ассоциата, соот-
ветственно. Время фазовой релаксации одиночного
иона и димерного ассоциата, определенное по спаду
сигнала двухимпульсного эха, Tm ∼ 1мкс и ∼ 3 мкс
соответственно. Можно полагать, что и время T2 для
одиночного иона короче, чем для димерного ассоци-
ата. Это различие может объяснить тот факт, что
одно и то же значение q для димерного ассоциата и
для одиночного иона достигается при разных значе-
ниях микроволновой мощности.

Запись спектров в режиме квадратурного детек-
тирования позволяет определить сдвиг фазы сигнала
ЭПР димерного ассоциата относительно фазы моду-
ляции магнитного поля. Зависимость этого фазово-
го сдвига от микроволновой мощности показана на
рис. 3.

Чтобы объяснить этот сдвиг, мы использовали ре-
зультаты статьи [12], где было показано, что воз-
буждение магнитных дипольных переходов в вы-
сокоспиновых системах может привести к преобра-
зованию магнитного дипольного момента спиновой
системы в квадрупольный момент. Скорость этого
преобразования определяется частотой нутации Sz-
составляющей дипольного магнитного момента во
вращающейся системе координат при резонансном
возбуждении. Эта частота пропорциональна вели-
чине магнитной составляющей микроволнового по-
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Рис. 3. Зависимость фазового сдвига между сигналом
ЭПР димерного ассоциата и фазой модуляции маг-
нитного поля от мощности микроволнового излуче-
ния. Значки соответствуют экспериментальным дан-
ным, линии соединяют значки между собой

ля B1. Величина создаваемого при этом квадруполь-
ного момента зависит от соотношения двух конку-
рирующих процессов: нутации спинов при резонанс-
ном возбуждении и релаксационных процессов, воз-
вращающих спиновую систему в равновесное состо-
яние. Степень преобразования дипольного момента
в квадрупольный можно оценить по отклонению Sz-
составляющей дипольного момента от его равновес-
ного значения при отсутствии резонансного возбуж-
дения. Порог формирования динамического квадру-
польного момента и появление аномальной составля-
ющей резонансной линии соответствуют равенству
скорости нутации и скорости релаксации спиновой
системы. При превышении этого порога в спино-
вой системе создается динамический электрический
квадрупольный момент. Этот же порог соответству-
ет началу насыщения резонансного перехода.

Электрические квадрупольные переходы, воз-
буждающиеся взаимодействием градиента электри-
ческого поля E1 c динамическим квадрупольным
моментом, существенно влияют на спиновую дина-
мику. В этом случае дипольный и квадрупольный ос-
цилляторы связаны отношением ведущий–ведомый.
Модуляция магнитного поля приводит к изменению
резонансной частоты дипольного осциллятора, что,
в свою очередь, приводит к изменению резонанс-
ной частоты квадрупольного осциллятора. Когда
магнитное поле увеличивается во время модуляции,
фаза дипольного осциллятора опережает фазу
квадрупольного осциллятора. А при уменьшении
магнитного поля фаза дипольного осциллятора
отстает от фазы квадрупольного осциллятора. В
результате возникает осциллирующий знакопере-

менный сдвиг фазы между взаимодействующими
магнитным дипольным и электрическим квадру-
польным моментами. Знак этого сдвига дважды
меняется в течение периода модуляции. Это при-
водит к осциллирующему обмену энергии между
этими двумя осцилляторами. Скорость этого обмена
пропорциональна скорости модуляции магнитно-
го поля, т.е. она смещена на 90◦ относительно
фазы модуляции. В результате этих процессов в
спектрах ЭПР появляется сигнал, фаза которого
ортогональна фазе модуляции магнитного поля.

Заключение. Методом стационарной ЭПР-
спектроскопии на спектрометре ELEXSYS
E580 (Bruker) с диэлектрическим резонатором
ER4118MD5W1 (Bruker) исследованы одиночные
ионы и димерные ассоциаты 63Cu2+ в монокристал-
ле BaF2. При относительно высокой микроволновой
мощности, достаточной для частичного насыщения
резонансных переходов, в спектре димерных ассоци-
атов обнаружены аномальные резонансные линии с
фазой, ортогональной фазе модуляции магнитного
поля. В спектре одиночных ионов таких линий
не наблюдалось. Разница спектров объясняется
особенностями спиновой динамики высокоспиновых
систем (S > 1/2), где при интенсивном резонанс-
ном возбуждении магнитных дипольных переходов
происходит преобразование магнитного дипольного
момента в электрический квадрупольный момент.
Градиент микроволнового электрического поля, все-
гда существующий в диэлектрическом резонаторе,
возбуждает электрические квадрупольные перехо-
ды между состояниями созданного динамического
квадрупольного момента. Появление резонансных
линий с ортогональной фазой объяснятся тем, что
при модуляции магнитного поля в высокоспиновых
системах появляется знакопеременный сдвиг фазы
между когерентностями связанных дипольного и
квадрупольного осцилляторов.

Это дает возможность разделить высокоспиновые
и низкоспиновые центры сравнением спектров ЭПР,
записанных в разных каналах при квадратурном де-
тектировании спектров относительно фазы модуля-
ции магнитного поля. Данный подход можно считать
новым методом анализа спинового состояния пара-
магнитных систем.

Измерения спектров ЭПР проводились с исполь-
зованием научного оборудования Коллективного
спектро-аналитического центра физико-химических
исследований строения, свойств и состава веществ
и материалов Федерального исследовательского
центра “Казанский научный центр Российской
академии наук”.
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