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В данной работе в рамках первопринципных расчетов и кластерного приближения проведен анализ
термодинамической стабильности, магнитных и электронных свойств нового 2D магнитного соединения
(Cr1−xFex)3C2 из семейства MXeнов. Предложена наиболее стабильная структура и магнитная конфи-
гурация (Cr1−xFex)3C2, в том числе с учетом функционализации поверхности фтором и кислородом.
Впервые обнаружен стабильный и перспективный для синтеза ферримагнитный MXен (Cr1/3Fe2/3)3C2

с большим магнитным моментом на ячейку, как в чистом виде, так и при функционализации его по-
верхности фтором.
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1. Введение. С момента своего открытия в
2011 г., семейство двумерных материалов МХенов
вызывает большой интерес благодаря своим уни-
кальным физическим свойствам. MXены представ-
ляют собой двумерные материалы с общей формулой
Мn+1XnTx (M – переходной металл, Х – углерод или
азот, Т – функциональная группа F, O, OH и т.п.,
n = 1−3). В зависимости от состава выделяют MXе-
ны двух типов. Первый тип – моно-MXены,где M-
слои состоят из одного и того же переходного метал-
ла (Ti2CTx, V2CTx, Ti3C2Tx, Nb4C3Tx) [1]. Во вто-
ром типе MXенов в слое смешаны два (или более) пе-
реходных металла (М1,М2)n+1XnTx. При этом раз-
личные переходные металлы М1 и М2 могут как упо-
рядочиваться в одной плоскости, так и образовывать
целые плоскости, занятые одним типом переходного
металла [2]. Второй тип более характерен для MXе-
нов 2-го порядка Мn+1XnTx, где n = 2 (М3X2Tx), то-
гда как в MXенах 1-го порядка Мn+1XnTx, где n = 1

(М2XTx) скорее наблюдается упорядочение в плос-
кости [1, 2].

В последнее время особое внимание уделяется
магнитным МХенам [3–7]. Двумерные магнитные
материалы привлекают к себе внимание благодаря
их потенциальному использованию в электронных
устройствах, использующих манипуляцию спиновой
степенью свободы носителей. Однако несмотря на то,
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что семейство МХенов обладает большим разнообра-
зием возможного химического состава, в настоящее
время экспериментально получены лишь несколько
магнитных МХенов [8–12]. Основной причиной яв-
ляется фазовая нестабильность магнитных МХенов.
Большинство синтезированных на сегодня МХенов
имеют в своем составе ранние переходные метал-
лы, такие как Ti, Mo, W, и являются немагнитны-
ми [3, 13, 14]. Для получения магнитных МХенов в
их состав необходимо включить поздние переходные
металлы такие как Cr, Mn или Fe. В работах [12–18] в
рамках теории функционала плотности (ТФП) было
предсказано существование ферромагнетизма в ряде
МХенов на основе Cr, Mn и Fe. Особый интерес пред-
ставляют железосодержащие MXены, поскольку на-
личие атома Fe позволяет ожидать, что такие соеди-
нения будут обладать высокими значениями магнит-
ных моментов, что обеспечит сильный результирую-
щий магнетизм. Так, в [17, 18] авторы теоретически
показали, что MXены первого порядка Fe2C облада-
ют термодинамической стабильностью и высокими
значениями локальных магнитных моментов при вы-
сокой температуре Кюри. Также показано, что MXен
первого порядка Fe2C является хорошим кандида-
том для создания двумерного ферромагнетика c XY-
анизотропией [18].

Однако, несмотря на обилие теоретических
работ, MXены остаются в значительной степени не
изученными экспериментально. Для прогнозиро-
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вания новых стабильных структур с желаемыми
свойствами оказались весьма полезными расчеты
из первых принципов. Подобные расчеты могут
предсказать структурные параметры, энергию об-
разования соединения, его электронную структуру
и магнитные свойства, и, в общем, находятся в
хорошем согласии с доступными эксперименталь-
ными данными. К сожалению, в первопринципных
расчетах требуемый вычислительный ресурс быстро
увеличивается при увеличении числа атомов в
элементарной ячейке, поэтому применение этих
расчетов для прогнозирования стабильности спла-
вов сильно ограничены. Преодолеть эту сложность
можно с помощью модельных подходов. Одним
из них является метод кластерного разложения
[19, 20], который доказал свою эффективность при
исследовании структурной и фазовой стабильности
различных соединений, а также в прогнозировании
новых сплавов. Так, на основе данного метода в
работе [16] была исследована и предсказана стабиль-
ность большой группы МХенов второго порядка
(М1,М2)n+1Сn: (V1−xMox)3C2, (Nb1−xMox)3C2,
(Ta1−xMox)3C2, (Ti1−xMox)3C2, (Ti1−xNbx)3C2,
(Ti1−xTax)3C2, (Ti1−xVx)3C2, и (Nb1−xVx)3C2. В
этой группе МХенов особый интерес представляет
возможность упорядочения атомов M1 и M2 в раз-
ных плоскостях, а также условия, необходимые для
образования такого внеплоскостного упорядочения
и его влияния на магнитные свойства MXенов.
Следует отметить, что в MXенах первого порядка
внеплоскостное упорядочение атомов M1 и M2 не
наблюдается. Как было показано [21, 22], наиболее
стабильными MXенами, содержащими переходные
d-металлы, являются хромсодержащие соединения.
В то же время магнитный порядок, обеспечиваемый
атомами железа, наряду с упорядочением атомов Cr
и Fe в разных плоскостях позволяет контролировать
состав, структуру и магнитные свойства MXенов,
что является уникальным в области дизайна маг-
нитных 2D-материалов и предлагает новый путь
для прикладного проектирования функциональных
наноматериалов. Поэтому в данной работе в рам-
ках кластерного разложения и первопринципных
расчетов рассматриваются стабильность, магнитные
и электронные свойства новых магнитных МХенов
второго порядка (Cr1−xFex)3C2.

2. Детали расчета. Расчеты проводились с
использованием пакета Vienna Ab initio Simulation
Package (VASP) [23, 24] с использованием псевдо-
потенциалов PAW-PBE [25, 26]. Конфигурация ва-
лентных электронов для атомов Cr, Fe и С бра-
лась: 3p63d54s1, 3p63d64s2, 2s22p2 соответственно.

Обменно-корреляционный функционал учитывался
с использованием приближения обобщенного гради-
ента (GGA). Число плоских волн было ограничено
энергией 600 эВ. Поскольку MXeны представяляют
собой квазидвумерные тонкие пленки, то расчет про-
водился в рамках приближения, в котором пленки
представлялись в виде периодических повторяющих-
ся пластин, разделенных в направлении c оси слоем
вакуума толщиной 12 Å. При оптимизации кристал-
лических структур использовалась сетка 21× 21× 1

Монкхорста–Пака [27]. Параметры ячейки и коорди-
наты атомов оптимизировались до тех пор, пока си-
лы на ионах не станут меньше 1 мэВ/A. Для учета
магнитной анизотропии все расчеты проводились с
учетом спин-орбитального взаимодействия [28].

В методе кластерного разложения (СЕ) [19, 20]
энергия любой атомной конфигурации сплава σ мо-
жет быть выражена через кластерные корреляцион-
ные функции ξα(σ) в виде

ECE(σ) = ΣαJαξα(σ). (1)

Jα – константа эффективного кластерного взаимо-
действия. Имея набор констант {Jα} можно опре-
делить энергию любой атомной конфигурации спла-
ва (1).

Мерой фазовой стабильности данной атомной
конфигурации сплава служит энергия образования
Ef (σ) по отношению к чистым соединениям

Ef (σ) = ECE(σ)− (1− x(σ))ECE(M13C2)−

− x(σ)ECE(M23C2), (2)

где x(σ) – концентрация атома М2. В рамках мето-
да кластерного разложения можно построить кар-
ту структура–фазовая стабильность и с ее помо-
щью найти наиболее стабильные сплавы, упорядо-
ченные или разупорядоченные, по всему интервалу
концентрации x. Для расчета эффективной энергии
сплава (1) в кластерное разложение были включены
одно-, двух- и трехчастичные кластеры. Таким об-
разом, имеется 15 констант эффективного кластер-
ного взаимодействия: J0 соответствует пустому кла-
стеру, J1 и J2 – одночастичным кластерам, J3–J10 –
парным кластерам, J11–J14 – трехчастичным класте-
рам. Для определения констант эффективного кла-
стерного взаимодействия были построены соответ-
ственно 15 базовых структур сплава с различной кон-
центрацией x на ячейках 2×2×1 и 3×3×1. Проверка
точности расчета энергий в кластерном приближе-
нии (1) показала, что метод воспроизводит энергии,
полученные из первых принципов, с точностью до
10−3 эВ.
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Рис. 1. (Цветной онлайн) (а) – Константы эффективного кластерного взаимодействия {Jα}. Индексы по оси абс-
цисс соответствуют порядковому номеру константы (см. детали расчета); (b) – энергия образования (Ef ) для разных
концентраций атомов железа (x), рассчитанная в кластерном приближении. Красным и синим кружками отмечены
наиболее стабильная и нестабильная структуры, соответственно

3. Структура, стабильность, электронные и

магнитные свойства (Cr1−xFex)3C2. Первым ша-
гом было определение стабильности (Cr1−xFex)3C2

в рамках кластерного приближения. Для этого бы-
ли рассчитаны константы эффективного взаимодей-
ствия {Jα}, которые показаны на рис. 1а.

Полученные константы эффективного взаимо-
действия были использованы для расчета энергии об-
разования Ef (σ) более чем 104 различных возмож-
ных атомных конфигураций в (Cr1−xFex)3C2. Для
построения различных атомных конфигураций ис-
пользовались ячейки, содержащие от 5 до 45 ато-
мов. Полученная карта, отображающая соотношение
структура–стабильность, приведена на рис. 1b. Каж-
дая точка представляет определенную атомную кон-
фигурацию сплава, чья относительная стабильность
определяется энергией образования Ef (σ), рассчи-
танной согласно (2). Более стабильными являются
атомные конфигурации, обладающие более низким
значением энергии образования Ef (σ).

Как видно из рис. 1b, наиболее стабильной ока-
зывается полностью упорядоченная структура с кон-
центрацией атомов Fe x = 2/3. В данной структуре
атомы Fe занимают поверхностные слои, как это по-
казано на рис. 2а, атомы хрома занимают централь-
ный внутренний слой. Наиболее нестабильной яв-
ляется структура при концентрации атомов железа
x = 1/3, где атомы Fe, наоборот, полностью занима-
ют внутренний слой (рис. 2b). Таким образом, мож-
но сделать вывод о наличии стабильного 2D спла-
ва (Cr1/3Fe2/3)3C2, с полностью упорядоченными по
слоям атомами переходных металлов. Отметим, что
расчеты энергии родительских MAX фаз также ука-
зывают, что атомам металлов энергетически выгодно
упорядочиваться по слоям.

Рис. 2. (Цветной онлайн) (а) – Наиболее стабильная
((Cr1/3Fe2/3)3C2) и (b) нестабильная ((Cr2/3Fe1/3)3C2)
структуры для (Cr1−xFex)3C2, соответствующие отме-
ченным кружками на рис. 1b. Синими шарами показа-
ны атомы хрома, оранжевыми шарами – атомы желе-
за. Маленькими коричневыми шарами показаны атомы
углерода

Для наиболее стабильной структуры
(Cr1/3Fe2/3)3C2 (рис. 2а), в рамках ТФП было
определено основное магнитное состояние. Для
этого были рассчитаны энергии различных возмож-
ных магнитных конфигураций. Анализ показал,
что из рассмотренных конфигураций наиболее
энергетически выгодными являются две магнитные
конфигурации с ферромагнитным упорядочением
магнитных моментов атомов железа и хрома в
отдельных плоскостях: (1) ферромагнитное (ФМ)
упорядочение плоскостей; (2) ферримагнитное
(ФиМ) упорядочение, при котором плоскости, заня-
тые атомами железа упорядочены ферромагнитно,
а магнитные моменты атомов хрома в центральной
плоскости направлены противоположно; а также
магнитное упорядочение, где магнитные моменты
атомов железа и хрома упорядочены антифер-
ромагнитно (АФМ) как в одной, так и в разных
плоскостях. Энергии этих трех магнитных конфи-
гураций приведены в табл. 1 вместе с параметрами
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Таблица 1. Параметр решетки в плоскости (а), намагниченность на ячейку и магнитные моменты на атомах железа и хрома
(М), энергии,рассчитанные относительно энергии ФиМ состояния (∆E = E − EFiM) в “чистом” (Cr1/3Fe2/3)3C2 и при функци-
онализации поверхности фтором и кислородом, где NM означает НМ состояние, FM – ФМ состояние, FiM – ФиМ состояние,
AFM – АФМ состояние

(Cr1/3Fe2/3)3C2 (Cr1/3Fe2/3)3C2 O (Cr1/3Fe2/3)3C2 F

a, Å 5.82 5.56 5.69

M, µB/f.u. 2.10 0.10 5.9

MCr, µB 0.62 0.00 1.00

MFe, µB 1.35 0.00 2.40

∆ENM, эВ/ф.е. 0.14 0.00 0.27

∆EFM, эВ/ф.е. 0.015 0.005 0.00

∆EFiM, эВ/ф.е. 0.00 0.002 0.21

∆EAFM, эВ/ф.е. 0.10 0.05 0.25

Рис. 3. (Цветной онлайн) (а) – Магнитное упорядочение в (Cr1/3Fe2/3)3C2. Синими шарами показаны атомы хрома,
оранжевыми шарами – атомы железа. Маленькими коричневыми шарами показаны атомы углерода. Стрелки пока-
зывают направление магнитных моментов; (b) – Парциальные плотности состояний в МХене (Cr1/3Fe2/3)3C2. Черная
линия соответствует d-состояниям хрома, красная линия – d-состояниям железа. Отрицательные значения на шкале
энергий отвечают состояниям со спином вниз. Ноль на шкале энергий соответствует энергии Ферми

решетки и магнитными моментами атомов железа и
хрома в основном состоянии. Кроме того, в табл. 1
приведена энергия немагнитного состояния (НМ).

Как видно из табл. 1 в (Cr1/3Fe2/3)3C2 наиболее
энергетически выгодным является ФиМ состояние
(рис. 3а), при котором атомы железа, расположенные
в поверхностных слоях, имеют магнитные моменты
µ ≈ 1.35µB, тогда как на атомах хрома, расположен-
ных в центральном слое, магнитный момент направ-
лен противоположно моментам железа и имеет мень-
шую величину (µ ≈ 0.62µB). Отметим, учет спин-
орбитального взаимодействия показал, что наиболее
энергетически выгодным является направление маг-
нитных моментов вдоль оси c.

Как видно из рис. 3b, где приведены рас-
считанные парциальные плотности состояний,
(Cr1/3Fe2/3)3C2 является металлом. Электрон-
ные состояния вблизи энергии Ферми занимают
d-электроны железа и хрома, образуя d-зоны.

d-электроны железа занимают преимущественно
состояния со спином вверх, тогда как состояния
со спином вниз заняты лишь частично, что приво-
дит к формированию положительного магнитного
момента на атоме железа (табл. 1). В атоме хрома
все d-орбитали со спином вверх и вниз частично
заполнены с небольшим преобладанием состояний со
спином вниз, что формирует небольшой отрицатель-
ный момент на атоме хрома. Такое распределение
электронов в результате приводит к наблюдаемой
ФиМ структуре.

4. Влияние функционализации поверхно-

сти на магнитные свойства МХенов. В процессе
синтеза к поверхностным слоям МХенов могут при-
соединяться функциональные группы Т = F, O, OH
и т.д .Состав этих групп определяется химией сре-
ды во время травления и последующей обработки
МXенов. Такая функционализация поверхности мо-
жет привести к изменениям свойств МXенов, в том
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Рис. 4. (Цветной онлайн) Парциальные плотности состояний (Cr1/3Fe2/3)3C2 при функционализации его поверхности:
(а) – фтором и (b) – кислородом. Черная линия соответствует d-состояниям хрома, красная линия – d-состояниям
железа. Отрицательные значения на шкале энергий отвечают состояниям со спином вниз. Ноль на шкале энергий
соответствует энергии Ферми

числе магнитных [16, 21, 29]. На поверхностях МХе-
нов есть несколько позиций, где могут располагать-
ся функциональные группы [21, 29]. Как показывают
наши предварительные оценки и анализ литературы,
наиболее энергетически выгодной является структу-
ра, в которой функциональные группы локализова-
ны выше октаэдрических междоузлий поверхност-
ных слоев атомов переходных металлов над атомами
углерода.

Для анализа влияния поверхностных функ-
циональных групп на структурные и магнитные
свойства рассматриваемых МХенов были опре-
делены энергетически выгодные магнитные упо-
рядочения при функционализации поверхности
МХенов фтором и кислородом. При функционали-
зации поверхности как фтором,так и кислородом,
(Cr1/3Fe2/3)3C2Т2 остается металлом (рис. 4). Од-
нако, функционализация поверхности влияет на
магнитные свойства рассматриваемого МХена.
При функционализации поверхности МХена кис-
лородом (Cr1/3Fe2/3)3C2O магнитные моменты на
поверхностных и внутренних атомах исчезают, и
соединение становится немагнитным (табл. 1). В
случае же функционализации поверхности МХена
фтором, (Cr1/33Fe2/3)3C2F остается магнитным, но
его магнитное состояние меняется с ФиМ на ФМ
состояние (рис. 5, табл. 1). Магнитные моменты, как
на поверхностных атомах железа, так и на внутрен-
них атомах хрома увеличиваются по сравнению с их
величинами в MXене со свободной поверхностью.
Изменение магнитного состояния и увеличение маг-
нитных моментов связано с перестройкой плотности
занятых состояний d-электронов атомов железа
и хрома вблизи энергии Ферми (рис. 4). Пики от

d−электронов железа и хрома со спином вверх
смещаются ниже по энергии и локализуются ниже
энергии Ферми, тогда как пики, соответствующие
d-электронам со спином вниз смещаются выше энер-
гии Ферми. В результате на атомах, как железа, так
и хрома формируются положительные магнитные
моменты, и магнитное состояние становится ФМ
(рис. 4а). Наоборот, в случае функционализации
поверхности кислородом на плотности состояний,
как для спинов вверх, так и спинов вниз образуется
ярко выраженная двухпиковая структура ниже
энергии Ферми, причем все состояния оказываются
заполненными, в результате магнитный момент на
атомах железа и хрома исчезают (рис. 4b).

Возможный механизм влияния функциональной
группы на магнитные свойства MXена заключается
в следующем. У атома кислорода имеется две неза-
полненные p-орбитали, в отличие от фтора, у которо-
го не заполнена только одна p-орбиталь. Поэтому в
случае функционализации поверхности фтором для
образования связи Fe–F единственное d-состояние со
спином вниз опустошается (рис. 4а), и в результате
формируется магнитный момент (табл. 1) с большим
значением, чем для MXена со свободной поверхно-
стью и при функционализации поверхности MXена
кислородом. И, наоборот, при функционализации по-
верхности кислородом два состояния со спином вверх
отдают свои электроны для образования связи Fe–
O. Это приводит к наблюдаемому смещению плотно-
сти электронных состояний со спином вверх вправо
к энергии Ферми и состояний со спином вниз влево
к энергии Ферми (рис. 4b). Результатом этого явля-
ется исчезновение магнитного момента при функци-
онализации поверхности кислородом.
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Рис. 5. (Цветной онлайн) Магнитное упорядочение в
МХене (Cr1/3Fe2/3)3C2 при функционализации его по-
верхности фтором. Синими шарами показаны атомы
железа, оранжевыми шарами – атомы хрома. Малень-
кими коричневыми шарами показаны атомы углерода.
Стрелки показывают направление магнитных момен-
тов. Функциональные группы на поверхности МХена
показаны красными и белыми шарами для кислорода
и фтора, соответственно

5. Заключение. Расчет в рамках ТФП и ме-
тода кластерного разложения стабильности, магнит-
ных и электронных свойств 2D сплава (Cr1−xFex)3C2

из семейства MXeнов показывает, что данное соеди-
нение является перспективным 2D магнитным ма-
териалом. Обнаружено, что при концентрации же-
леза x = 2/3 сплав (Cr2/3Fe1/3)3C2 обладает фазо-
вой стабильностью и является ферримагнетиком с
намагниченностью M = 2.1µB/ф.е. Функционали-
зация поверхности фтором приводит к формирова-
нию ФМ-состояния, причем намагниченность увели-
чивается до ≈ 6µB/ф.е. Таким образом, мы показали
принципиальную возможность получения двумерно-
го ферромагнитного сплава, содержащего хром и же-
лезо для применения в электронной индустрии. Как
уже упоминалось, большинство МХенов получают
путем селективного травления слоя А-атомов из со-
ответствующей МАХ-фазы, в процессе которого к
поверхностным слоям МХена присоединяются функ-
циональные группы Т = F, O, OH, определяемые хи-
мией среды во время травления. Поскольку наиболее
интересный результат наблюдается при функциона-
лизации поверхности МХена фтором, то можно реко-
мендовать при синтезе использовать F-содержащие
растворы, такие как плавиковая кислота HF или
фторид лития LiF. Более того, можно ожидать, что
функционализация поверхности других двумерных
магнитных веществ также может привести к изме-
нению магнитного упорядочения между слоями, что
представляет интерес для дальнейших исследований.

Расчеты выполнены с использованием вы-
числительных ресурсов “Комплекса исследова-
тельских установок моделирования и обработки
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(http://ckp.urcki.ru).
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