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В работе приведены результаты исследований по выращиванию методом молекулярно-пучковой эпи-
таксии гетероструктур с квантовыми точками InAs/InGaAs и метаморфными буферными слоями (МБС)
InxGa1−xAs/GaAs(001), предназначенных для получения однофотонной генерации в телекоммуникаци-
онном С-диапазоне длин волн. Проанализирована возможность уменьшения толщины градиентного слоя
InxGa1−xAs с целью формирования эффективных микрорезонаторных структур с толщиной резонатор-
ной полости вплоть до двух длин волн. Приведены данные характеризации методами просвечиваю-
щей электронной микроскопии в геометрии поперечного сечения и спектроскопии фотолюминесценции
структур с метаморфными буферными слоями, выращенных на поверхности распределенного брэггов-
ского отражателя Al0.9Ga0.1As/GaAs.
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1. Введение. Источники одиночных фотонов,
излучающие в телекоммуникационных диапазонах
длин волн, являются ключевыми элементами, необ-
ходимыми для создания эффективных систем без-
опасной связи на основе квантового распределения
ключей. При этом наиболее востребованным являет-
ся спектральный C-диапазон (λ ∼ 1.55мкм), так как
в этом случае возможна передача квантовой инфор-
мации на большие расстояния за счет возможности
использования существующей волоконно-оптической
инфраструктуры и низких потерь при распростране-
нии световых волн. Одним из наиболее перспектив-
ных направлений для реализации таких источников
является использование структур с гетероэпитакси-
альными полупроводниковыми квантовыми точками
(КТ) InAs, при этом целевая длина волны излучения
может быть достигнута при помещении КТ InAs в
матрицу как InP [1–3], так и In(Ga,Al)As [4, 5]. Одна-
ко подход, связанный с помещением КТ внутри ци-
линдрического микрорезонатора с распределенными
брэгговскими отражателями (РБО), наиболее полно
можно реализовать в структурах с КТ InAs в мат-
рице InGaAs при использовании метаморфных бу-
ферных слоев (МБС) InxGa1−xAs/GaAs(001) [6–8].
В этом случае в конструкции гетероструктур мож-
но применять эффективные РБО на основе хорошо
разработанной системы Al0.9Ga0.1As/GaAs.
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Настоящая работа продолжает исследования ме-
таморфных гетероструктур с КТ InAs/InGaAs, вы-
ращенных методом молекулярно-пучковой эпитак-
сии (МПЭ) на подложках GaAs (001) и излучаю-
щих вблизи 1.55 мкм. Ранее было продемонстриро-
вано, что в таких структурах в спектрах низкотем-
пературной микро-фотолюминесценции (микро-ФЛ)
наблюдаются узкие линии, связанные с излучением
из отдельных КТ, и установлено, что несмотря на
высокую поверхностную плотность всех формируе-
мых квантовых объектов, плотность “больших” КТ
c латеральными размерами L = 40−45 нм и высотой
H = 5.5−6 нм, ответственных за излучение в диа-
пазоне 1.50–1.55 мкм, сравнительно невелика и со-
ставляет ∼(1−4) × 108 см−2 [9]. При этом в работе
[9] КТ InAs/InGaAs формировались непосредственно
на поверхности градиентного слоя InxGa1−xAs/GaAs
(001) с линейным профилем изменения состава. Су-
щественным недостатком такого подхода является
то, что слой МБС InxGa1−xAs/GaAs (001) выращи-
вается при низкой температуре (∼TS = 380−400 ◦С)
с целью подавления “штриховой” (cross-hatch) мор-
фологии поверхности. Кроме того, это приводит к
длительной остановке роста, связанной с изменением
температуры подложки, непосредственно перед фор-
мированием слоя КТ.

Также использование МБС InxGa1−xAs/GaAs(001)
с линейным профилем изменения x от xmin = 0.05

до xmax = 0.43−0.44 при скорости изменения состава
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∼ 35 % In/мкм приводит к большой (∼ 1 мкм) тол-
щине МБС и предполагает реализацию резонатора
с толщиной полости не менее 3λ/n, где n – средний
показатель преломления в резонаторной полости.
Данное обстоятельство существенно ухудшает по-
тенциально достижимые параметры источников
однофотонного излучения, так как сравнительно
большой объем оптической моды не позволяет
добиться достаточно высокого значения фактора
Парселла, определяющего скорость спонтанной
излучательной рекомбинации в КТ [10]. Возможный
вариант решения проблемы – это выращивание МБС
InxGa1−xAs/GaAs (001) с меньшей толщиной. В этом
случае также появляется возможность формирова-
ния КТ в ненапряженном слое матрицы InxGa1−xAs,
выращиваемым при более оптимальных условиях.
Стоит отметить, что реализация сверхтонкого гра-
диентного МБС InxGa1−xAs/GaAs (001) толщиной
∼ 220 нм при изменении содержания In в слое до
xmax ∼ 0.4 недавно была продемонстрирована при
использовании для роста гетероструктур метода
газофазной эпитаксии из металлоорганических
соединений (МОГФЭ) [8]. Однако получению сверх-
тонких МБС InxGa1−xAs/GaAs (001) методом МПЭ
препятствует ряд нерешенных проблем. В частно-
сти, чтобы избежать перехода в режим 3D-роста с
соответствующим резким ухудшением морфологии
поверхности, величина начальной ступени в содер-
жании In не должна превышать ∼ 20 % [11, 12], что
значительно меньше, чем было реализовано в работе
[8]. Во-вторых, жесткие ограничения на верхний
предел толщины МБС (∼ 220 нм от начала МБС до
слоя КТ при толщине полости λ/n), помимо исполь-
зования начальной ступени с высоким содержания
In также требуют и большой скорости изменения
содержания In в МБС – до 100 % In/мкм. При этом
даже при использовании корневого (convex) про-
филя изменения состава в реализованных методом
МПЭ МБС InxAl1−xAs/GaAs(001) (x = 0.05−0.79,
d = 850 нм) средняя скорость изменения содержания
In в градиентном слое не превышает ∼ 85 %/мкм [13].

В настоящей работе мы представляем результа-
ты структурных и оптических исследований гетеро-
структур с КТ InAs/InGaAs, выращенных методом
МПЭ с использованием МБС InxGa1−xAs с линей-
ным профилем изменения состава (x = 0.16−0.44) на
подложках GaAs(001) с толщиной градиентного слоя
∼ 640 нм, в том числе и метаморфных структур, вы-
ращенных на поверхности распределенного брэггов-
ского отражателя Al0.9Ga0.1As/GaAs.

2. Эксперимент. Структуры с МБС InxGa1−xAs
и КТ были выращены методом МПЭ на подложках

GaAs (001) при использовании в качестве источни-
ков молекулярных пучков эффузионных ячеек Ga,
In, Al и клапанного источника As. Схематическое
изображение исследуемой структуры (далее струк-
тура # A) с МБС и КТ вместе с профилем изме-
нения состава по In приведено на рис. 1. Структура

Рис. 1. (Цветной онлайн) Схематическое изображе-
ние конструкции исследуемой структуры с КТ
InAs/InGaAs (структура # A)

содержит буферный слой GaAs толщиной ∼ 300 нм,
слой МБС с линейным профилем изменения соста-
ва по In с расчетной толщиной ∼ 640 нм и инверс-
ный слой InxGa1−xAs толщиной ∼ 0.6 мкм, в кото-
ром на расстоянии ∼ 215 нм от поверхности встав-
лен слой КТ InAs. Содержание In в МБС изменя-
лось от x = 0.16 до x ∼ 0.44 при скорости измене-
ния состава по индию ∼ 43 % In/мкм. Особенности
формирования МБС InxGa1−xAs/GaAs с линейным
профилем изменения состава, а также основные па-
раметры МПЭ градиентного слоя приведены в рабо-
тах [9, 14]. Содержание In в инверсном слое (матри-
це) было выбрано равным x ∼ 0.32, что предполага-
ет величину обратной ступени ∆x ∼ 0.11−0.12, т.е.
несколько больше, чем требуется для согласования
по параметру решетки с верхней частью МБС [14].
Нижняя (дальняя от поверхности) часть инверсного
слоя In0.32Ga0.68As выращивалась при температуре
TS ∼ 470 ◦С при соотношении потоков As/In ∼ 8–
10, в то время как при МПЭ верхнего прикрываю-
щего КТ слоя InGaAs толщиной ∼ 215 нм темпера-
тура подложки составила TS ∼ 420 ◦С. Осаждение
слоя InAs КТ проводилось на поверхности тонкого
слоя (interlayer) GaAs толщиной ∼ 3 МС, вставлен-
ного между слоем матрицы In0.32Ga0.68As и слоем
КТ [9]. Дополнительно была выращена и исследова-
на комплементарная структура (# B), содержащая
слой РБО, состоящий из 33 пар четвертьволновых
слоев 129 нм Al0.9Ga0.1As/111 нм GaAs, и заканчи-
вающаяся слоем GaAs толщиной ∼45 нм. При этом
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оставшаяся часть структуры полностью соответство-
вала описанной выше структуре # A.

Исследования структурных свойств были выпол-
нены методом просвечивающей электронной микро-
скопии (ПЭМ) в геометрии поперечного сечения в
микроскопе JEM-2100F (JEOL, Япония) с ускоряю-
щим напряжением 200 кВ. Электронно-прозрачные
образцы для ПЭМ подготавливались в двух попе-
речных сечениях типа {110} посредством стандарт-
ной процедуры механической шлифовки-полировки
для начального утонения и финишного ионного рас-
пыления ионами Ar+ (4 кэВ). Для исследования оп-
тических свойств применялся метод спектроскопии
фотолюминесценции (ФЛ) и микро-ФЛ. Спектр ФЛ
измерялся при T = 77K при накачке непрерыв-
ным полупроводниковым лазером с длиной волны
λ = 660 нм. Измерение спектров микро-ФЛ проводи-
лось при температуре 10 K. Особенности измерения
спектров микро-ФЛ были приведены ранее в рабо-
те [9].

3. Результаты и обсуждение. Ранее было уста-
новлено, что введение в конструкцию структуры с
МБС и КТ InAs/InGaAs тонкого промежуточно-
го слоя GaAs толщиной dGaAs ∼ 3МС, выращива-
емого непосредственно перед формированием слоя
КТ, оказывает существенное влияние на кинетику
формирования КТ InAs и способствует подавлению
тенденции к образованию протяженных квантовых
штрихов [9]. При этом осаждение тонкого слоя GaAs
на поверхности градиентного слоя InxGa1−xAs ча-
стично компенсирует накопленную упругую энер-
гию в МБС, что приводит к увеличению крити-
ческой толщины (hS−K) перехода в ростовую мо-
ду Странского–Крастанова при формировании КТ
InAs. На рисунке 2 приведены экспериментальные
данные по hS−K для серии структур, в которых
КТ InAs были выращены при температуре подлож-
ки TS = 470 ◦C непосредственно на поверхности
МБС InxGa1−xAs с линейным профилем изменения
состава (xmax ∼ 0.43−0.44, скорость изменения со-
става по индию – 30–40 % In/мкм). При исполь-
зуемой TS = 470 ◦C переиспарением индия с по-
верхности роста можно пренебречь и, таким обра-
зом, величина hS−K может быть определена in situ

по времени регистрации 2D–3D-перехода на картине
дифракции быстрых электронов на отражение при
известной заданной скорости осаждения по InAs.
При этом в качестве эталона для определения ско-
рости осаждения мы использовали регистрируемое
время 2D–3D-перехода для классической системы
КТ InAs/GaAs, где hS−K ≈ 1.65МС [15]. Из ри-
сунка 2 следует, что hS−K действительно возраста-

Рис. 2. Зависимость критической толщины (hS−K) 2D–
3D-перехода в ростовую моду Странского–Крастанова
для структур с КТ InAs/InGaAs, выращенными на по-
верхности МБС с линейным профилем изменения со-
става (xmax ∼ 0.43−0.44, скорость изменения состава
по индию – 35–40 % In/мкм), от толщины подслоя GaAs
(dGaAs), вставленного между верхней частью МБС и
слоем КТ (TS = 470 ◦C). Пунктирная линия проведена
для лучшего восприятия

ет с ∼ 1.2 МС при dGaAs = 0 до ∼ 1.8–1.9 МС при
dGaAs = 3МС.

На рисунке 2 также видно, что дальнейшее увели-
чение толщины подслоя GaAs с 3 до 4 МС уже не при-
водит к существенному увеличению hS−K . Достаточ-
но неожиданным оказался тот факт, что регистриру-
емое время 2D–3D-перехода при формировании КТ
InAs в ненапряженной матрице InxGa1−xAs с x ∼ 0.3

при толщине dGaAs = 3МС возрастает всего лишь на
∼ 5 % по величине по сравнению со случаем форми-
рования КТ непосредственно в верхней части гради-
ентного слоя, что соответствует осаждению ∼ 0.1 МС
InAs. Более того, схожие времена 2D–3D–перехода
(толщины hS−K) наблюдаются и при формировании
КТ в структуре # A. Возможная причина заключа-
ется в том, что верхний инверсный слой с x ∼ 0.3, на
поверхности которого формируются КТ, также обла-
дает остаточной деформацией, так как не является
согласованным по параметру решетки с МБС.

Спектры макро- (T = 77К) и микро-ФЛ (T =

= 10К) при надбарьерной оптической накачке лазе-
ром с λ = 660 нм для эпитаксиальной гетерострук-
туры # A представлены на рис. 3a. В спектре микро-
ФЛ наблюдаются узкие линии, связанные с излуче-
нием из отдельных КТ, в том числе и в целевом спек-

Письма в ЖЭТФ том 121 вып. 1 – 2 2025



40 С. В. Сорокин, Г. В. Климко, И. В. Седова и др.

Рис. 3. (Цветной онлайн) (a) – Спектр фотолюминесценции эпитаксиальной гетероструктуры #A с МБС InxGa1−xAs
с линейным профилем изменения состава по In и КТ InxGa1−xAs/GaAs, измеренный при T = 77 К. На вставке при-
веден спектр микро-ФЛ той же структуры при T = 10 K, демонстрирующий линии излучения из отдельных КТ на
длине волны ∼ 1.55 мкм. (b) – Зависимость ширины запрещенной зоны твердого раствора InxGa1−xAs от состава при
T = 77 K. На рисунке представлены экспериментальные данные для соединений InxGa1−xAs с различным содержани-
ем x: 1 – данные S.V. Sorokin et al. [14]; 2 – данные B. Scaparra et al. [17]; 3 – данные T. J. Kim et al. [18]; 4 – данные
Z.Hang et al. [19]; 5 – данные D.K.Gaskill et al. [20]; 6 – данные этой работы. Экспериментальные данные, измерен-
ные при температуре 300 K [14, 17, 18], приведены с учетом пересчета на T = 77 K. Пунктирной линией (7) приведена
зависимость E0(x) в соответствии с выражением E0 (77 K)= 1.500 − 1.53x + 0.45x2 [16]

тральном диапазоне вблизи длины волны 1.55 мкм
(см. вставку к рис. 3a). В спектре ФЛ четко разли-
чаются 2 пика. Низкоэнергетичный широкий пик с
максимумом E1 ≈ 0.83 эВ соответствует излучению
из КТ, тогда как менее интенсивный коротковолно-
вый пик с максимумом E2 ≈ 0.91 эВ может быть
ассоциирован с излучением из верхней части МБС
InxGa1−xAs, что согласуется с зависимостью шири-
ны запрещенной зоны твердого раствора InxGa1−xAs
от состава x при T = 77K, показанной на рис. 3b. На
данном рисунке приведены экспериментальные дан-
ные для соединений InxGa1−xAs с различным содер-
жанием x, а также зависимость ширины запрещен-
ной зоны при T = 77K (пунктирная линия) в со-
ответствии с выражением E0 (77 K)= 1.500− 1.53x+

+ 0.45x2 [16]. При пересчете значений энергии для
экспериментальных точек из работ [14, 17, 18] мы
предполагали величину различия в ширине запре-
щенной зоны равной ∼ 70–75 мэВ при изменении тем-
пературы от T = 300K до T = 77K для твердых
растворов InxGa1−xAs с содержанием In в диапазоне
x = 0.15−0.5, основываясь на экспериментально из-
меренных зависимостях E0(T ) для твердых раство-

ров InxGa1−xAs с x = 0.15 [19] и x = 0.53 [20].
Стоит отметить, что все экспериментальные точки
достаточно хорошо ложатся на кривую, обозначен-
ную на рис. 3b пунктирной линией. Соответственно,
мольная доля In в твердом растворе InxGa1−xAs, ко-
торый соответствует энергии межзонного перехода
E2 ≈ 0.91 эВ, может быть оценена как x ∼ 0.44,
что хорошо согласуется с заданным значением xmax

в верхней части МБС.
Планарные метаморфные гетероструктуры с

InxGa1−xAs МБС и InAs КТ не пригодны для
практической реализации однофотонной генерации
как из-за низкой эффективности вывода излуче-
ния из таких структур, так и ввиду отсутствия
возможности существенного увеличения скорости
спонтанной рекомбинации, что делает невозможным
достижение приемлемой эффективности генерации
фотонов. Как отмечалось выше, одним из воз-
можных решений является создание структуры с
цилиндрическими микрорезонаторами на основе
метаморфной гетероструктуры с InxGa1−xAs МБС и
КТ, выращиваемой на поверхности эпитаксиальной
гетероструктуры с РБО.
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С этой целью нами была выращена метаморф-
ная гетероструктура # B, в которой осаждение
слоя МБС InxGa1−xAs с линейным профилем из-
менения состава было выполнено на поверхности
эпитаксиальной гетероструктуры РБО, содер-
жащей 33 пары четвертьволновых слоев 129 нм
Al0.9Ga0.1As/111 нм GaAs. Учитывая толщины ниж-
него буферного слоя GaAs (∼45 нм), градиентного
слоя с x = 0.16−0.44 (∼ 640 нм ) и инверсного слоя
In0.32Ga0.68As (∼ 600 нм), такая конструкция предпо-
лагает формирование микрорезонаторов с толщиной
резонаторной полости в три длины волны – 3λ/n.
При этом слой с высоким значением показателя
преломления (InGaAs) ограничен сверху границей
воздух/полупроводник.

На рисунке 4 приведено темнопольное (002) (ле-
вая часть рисунка) и светлопольное (004) (правая

Рис. 4. Темнопольное (002) (а) и светлопольное (004)
(b) ПЭМ изображения гетероструктуры с РБО и МБС
InxGa1−xAs/GaAs(001) в поперечном сечении (110)

часть рисунка) изображения структуры с РБО и
МБС (структуры # B), полученное методом ПЭМ
в геометрии поперечного сечения в сечении (110).
Для лучшего восприятия границы слоев структуры
для двух изображений были совмещены друг с дру-
гом. В применении к GaAs рефлекс 002 является хи-
мически чувствительным, поэтому на изображении
наблюдается относительно сильный контраст слоев
различного химического состава, и на изображении
на рис. 4a можно четко различить границу между
МБС InxGa1−xAs и нижележащим слоем GaAs тол-
щиной 45 нм, определяющим границу РБО. С другой
стороны, на темнопольном изображении более замет-
но проявляется многоэтажный характер распределе-
ния сетки дислокаций несоответствия в МБС. Как на
светлопольном, так и на темнопольном изображени-
ях отчетливо видно, что толщина дефектного слоя
МБС составляет около 440 нанометров, при этом
в верхней части МБС (∼ 200 нанометров), облада-
ющей остаточной деформацией, плотность дислока-

ций находится ниже предела обнаружения методом
ПЭМ (< 107 см−2). Измеренная толщина инверсного
слоя In0.32Ga0.68As для структуры # B хорошо со-
гласуется с заданным значением, при этом толщина
градиентного слоя оказалась на ∼ 2.5 % меньше, чем
планировалось. Из изображений, представленных на
рис. 4, также следует, что часть образующихся дис-
локаций проникает в верхние слои РБО, при этом
глубина их проникновения может быть оценена на
уровне (2–3) пар слоев Al0.9Ga0.1As/GaAs. Волни-
стый муар в верхней части рис. 4b – это артефакт
подготовки образца.

Таким образом, выбранная величина начальной
ступени в содержании In в МБС (x = 0.16) не при-
водит к срыву эпитаксиального роста и увеличению
плотности прорастающих дислокаций в верхней ча-
сти МБС. Это означает, что методом МПЭ возможна
реализация гетероструктур с МБС и КТ с толщиной
полости до 2λ/n, учитывая тот факт, что скорость
изменения состава по In в МБС InxGa1−xAs/GaAs
(001) может быть увеличена по крайней мере до
∼ 49 % In/мкм [17]. ПЭМ изображения структуры
# B вблизи области с КТ мало чем отличаются от
опубликованных ранее [9], и потому здесь не приво-
дятся.

На рисунке 5 представлен экспериментально из-
меренный при T = 77K нормированный спектр от-

Рис. 5. (Цветной онлайн) Нормированные спектры от-
ражения гетероструктуры # B, измеренные при темпе-
ратуре жидкого азота (77К) в различных точках пла-
стины. На вставке к рисунку приведен спектр микро-
ФЛ гетероструктуры # B вблизи резонансного провала

ражения гетероструктуры # B в 2-х различных точ-
ках пластины. Из рисунка 5 следует, что расчетные
значения длины волны резонансного провала доста-
точно хорошо согласуются с заданным значением
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λ = 1550 нм. В спектре микро-ФЛ (вставка к рис. 5) в
области вблизи λ = 1550 нм наблюдаются узкие ли-
нии от одиночных КТ, при этом их интенсивность
возрастает в 5–7 раз по сравнению со случаем гете-
роструктуры # A (см. вставку к рис. 3). В пределах
стоп-зоны спектра отражения интенсивные узкие ли-
нии ФЛ отсутствуют. Полученный результат под-
тверждает перспективность выбранного подхода с
применением метаморфных структур с InAs/InGaAs
КТ для реализации однофотонного излучения в диа-
пазоне 1.55 мкм.

4. Заключение. В работе продемонстрирова-
на возможность выращивания методом МПЭ МБС
InGaAs/GaAs(001) толщиной ∼ 0.6 мкм при макси-
мальном содержании In в градиентом слое xmax ∼
∼ 0.44. Продемонстрировано, что плотность дисло-
каций в активной области гетероструктуры находит-
ся ниже предела обнаружения методом ПЭМ, т.е. со-
ставляет менее 107 см−2. Часть образующихся дис-
локаций проникает в верхние слои РБО, глубина их
проникновения может быть оценена на уровне (2–3)
пар слоев Al0.9Ga0.1As/GaAs. Полученные резуль-
таты актуализируют возможность реализации мета-
морфных структур с КТ, излучающими в диапазоне
1.55 мкм, с толщиной резонаторной полости вплоть
до двух длин волн. Методом спектроскопии микро-
ФЛ продемонстрировано, что для планарной мета-
морфной структуры, выращенной на поверхности
РБО, интенсивность линий ФЛ, связанных с излу-
чением из отдельных КТ, возрастает в несколько раз
по сравнению со структурой без нижнего РБО.
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M. von Helversen, A. Sakanas, A. Huck, K. Yvind,
N. Gregersen, A. Musial, M. Syperek, E. Semenova,
and T. Heindel, ACS Photonics 11(2), 339 (2024);
https://doi.org/10.1021/acsphotonics.3c00973.

3. P. Holewa, D.A. Vajner, E. Zieba-Ostój, M. Wasiluk,
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