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В настоящей работе аналитически получено соотношение, устанавливающее связь между коэффи-
циентом нелинейного показателя преломления колебательной природы n2(ω) и кубической восприим-
чивостью χ(3)(ω′;ω′, ω,−ω) колебательной природы через известные из справочной литературы опти-
ческие, спектральные и тепловые характеристики вещества. Это соотношение позволяет рассчитывать
нелинейный набег фазы низкоинтенсивного зондирующего излучения на частоте ω′ в поле мощной тера-
герцовой волны накачки на частоте ω. Приведены теоретические оценки кубической восприимчивости
χ(3)(ω′;ω′, ω,−ω) воды и кварцевого стекла для эксперимента типа терагерцового эффекта Керра. По-
лученные результаты находятся в хорошем согласии с экспериментальными данными.
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1. Введение. Первые исследования явлений, воз-
никающих при взаимодействии с веществом тера-
герцового (ТГц) излучения, которое условно можно
определить как электромагнитное излучение в диа-
пазоне частот 0.1−10ТГц [1], были начаты еще в
первой половине прошлого века [2]. Однако актив-
ное изучение эффектов, индуцируемых полем интен-
сивного ТГц излучения, началось лишь в последние
десятилетия, когда получили широкое распростра-
нение эффективные источники и приемники мощ-
ных ТГц волн [1, 3]. Интенсивное ТГц излучение
оказалось незаменимым инструментом для нелиней-
ной спектроскопии вещества, поскольку в ТГц спек-
тральном диапазоне находятся фундаментальные
частоты колебаний атомов, молекул и молекулярных
кластеров многих материалов, а длительность ТГц
импульсов, составляющая единицы–десятки пикосе-
кунд, соответствует характерным временам протека-
ния динамических микропроцессов в веществе, таких
как релаксация фононов, электрон-дырочных пар и
т.д. [4–8].

Среди методов ТГц спектроскопии, основанных
на нелинейных эффектах, особенно популярны тех-
ники типа pump−probe (накачки–зондирования). Та-
кие техники подразумевают облучение исследуемого
материала двумя импульсами – мощным импульсом
накачки и маломощным импульсом–зондом. Боль-
шинство методов этого класса используют так на-
зываемый ТГц эффект Керра (THz Kerr Effect), ко-
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торый по существу представляет собой аналог оп-
тического эффекта Керра (Optical Kerr Effect) в
ТГц диапазоне [9–13]. Суть этого эффекта заклю-
чается в том, что при распространении в исследу-
емой среде мощного линейно-поляризованного ТГц
импульса накачки с центральной частотой спектра
ωp одновременно со слабым оптическим зондирую-
щим импульсом с центральной частотой спектра ωz,
линейная поляризация которого повернута на угол
45◦ относительно поляризации ТГц импульса, оп-
тический импульс испытывает наведенное двулуче-
преломление за счет нелинейного изменения пока-
зателя преломления среды вдоль направления ко-
лебаний электрического поля ТГц излучения. На-
веденное двулучепреломление приводит к измене-
нию направления поляризации зондирующего излу-
чения, благодаря чему измеряя поляризацию можно
определить нелинейный коэффициент ncross

2 , харак-
теризующий так называемые эффекты перекрестно-
го взаимодействия (cross-coupling effects) [14], кото-
рый пропорционален кубической восприимчивости
χ(3)(ωz;ωz, ωp,−ωp) и вводится по аналогии с коэф-
фициентом нелинейного показателя преломления ве-
щества как n = n0 + ncross

2 I, где n – показатель пре-
ломления среды на частоте оптического излучения,
n0 – линейный показатель преломления среды на
частоте оптического излучения, I – усредненная по
времени интенсивность ТГц излучения, измеряемая
в Вт/cм2. Выделяют также мгновенный нелиней-
ный коэффициент ncross

2,f , обусловленный электронно-
колебательными процессами, и инерционный коэф-
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фициент ncross
2,s , обусловленный переориентацией мо-

лекул в веществе. В последнем случае вместо средней
интенсивности в выражении для показателя прелом-
ления следует рассматривать свертку мгновенной
интенсивности с функцией отклика среды. В насто-
ящей работе, однако, речь идет только о мгновенной
части нелинейного отклика, так что ncross

2 = ncross
2,f .

Важным нюансом является тот факт, что коэф-
фициент ncross

2 , измеряемый при двухволновом сме-
шении, который в большинстве работ обозначается и
именуется коэффициентом нелинейного показателя
преломления n2, в строгом смысле таковым не яв-
ляется, хотя и определяется аналогичным образом,
что приводит к различным недоразумениям. В част-
ности, в работе [11] с помощью ТГц эффекта Керра
был определен ncross

2 воды, который составил поряд-
ка 10−12 см2/Вт. Позже в работе [15] было сообще-
но об обнаружении методом Z-Scan гигантской кер-
ровской нелинейности у воды в ТГц диапазоне, ха-
рактеризуемой коэффициентом нелинейного показа-
теля преломления n2 порядка 10−10 Вт/см2 . Этот
результат был подтвержден рядом других экспери-
ментов [16, 17], а гигантская ТГц нелинейность была
обнаружена в ряде прочих жидких и твердых мате-
риалов [17–21]. Расхождение результатов измерений
нелинейного показателя преломления воды, получен-
ных с помощью ТГц эффекта Керра и другими ме-
тодами, вызвало ряд вопросов, а наличие гигантской
нелинейности в ТГц диапазон было поставлено под
вопрос. В действительности, никакого противоречия
между данными результатами нет, поскольку гигант-
ская ТГц нелинейность была обнаружена при изме-
рении коэффициента нелинейного показателя пре-
ломления n2, который пропорционален нелинейной
кубической восприимчивости χ(3)(ωp;ωp, ωp,−ωp) и
характеризует нелинейное самовоздействие излуче-
ния в веществе, в то время как в работах, посвящен-
ных ТГц эффекту Керра, измерялся нелинейный ко-
эффициент ncross

2 , который характеризует нелиней-
ное взаимодействие двух волн в среде и не являет-
ся коэффициентом нелинейного показателя прелом-
ления в строгом смысле этого слова. При такой по-
становке вопроса становится важной задача об уста-
новлении аналитической связи между нелинейными
коэффициентами n2 и ncross

2 , которая позволит при
измерении любого из этих коэффициентов сразу вос-
становить другой, а также позволит оценивать вели-
чину нелинейного набега фазы зондирующего излу-
чения в двухволновых экспериментах с использова-
нием ТГц излучения. Решение этой задачи важно не
только с точки зрения спектроскопических измере-
ний, но и для корректной работы ряда оптических

устройств, в частности для усиления слабых сигна-
лов в поле ТГц волны накачки в нелинейном интер-
ферометре Фабри–Перо [22].

В настоящей работе с помощью теории коле-
бательной нелинейности, основанной на гипотезе,
согласно которой основной вклад в нелинейный
отклик вещества на поле ТГц излучения вносит
ангармонизм валентных молекулярных колебаний
(stretching vibrations), выведены аналитические вы-
ражения для коэффициента ncross

2 , и для отноше-
ния ncross

2 (ωz)/n2(ωp), которые могут быть расчи-
таны через известные из справочной литературы
тепловые, оптические и спектральные характеристи-
ки вещества. Показано, что величина отношения
ncross
2 (ωz)/n2(ωp) для сред, обладающих гигантской

ТГц нелинейностью, зависит только от центральных
частот взаимодействующих волн, центральной час-
тоты фундаментальной полосы поглощения валент-
ной колебательной моды и ее ширины. Продемон-
стрировано, что для воды и кварцевого стекла от-
ношение ncross

2 (ωz)/n2(ωp) при центральных частотах
волны накачки и зондирующего излучения ωp/2π =

= 1ТГц и ωz/2π = 375ТГц (800 нм) составляет
5 × 10−3 и 5 × 10−5 соответственно, что хорошо со-
гласуется с экспериментальными данными.

2. Нелинейный отклик вещества в поле ТГц

излучения. Существуют различные подходы к опи-
санию нелинейного отклика вещества в поле ТГц из-
лучения. Ряд авторов считает, что его природа обу-
словлена индуцированной переориентацией молекул
[23], резонансным возбуждением либрационных мод
[23–25], туннельной ионизацией [26, 27], индуциро-
ванными фоноными поляритонами [21]. Однако пер-
вая теоретическая модель, которая была предложе-
на для описания нелинейного отклика вещества при
его возбуждении ТГц излучением (далее – теория ко-
лебательной нелинейности), основывается на гипо-
тезе о колебательной природе гигантской нелиней-
ности в ТГц спектральном диапазоне [28]. Согласно
этой гипотезе, основной вклад в нелинейное измене-
ние показателя преломления в поле ТГц излучения
вносит ангармонизм валентных молекулярных коле-
баний, причем эти колебания могут быть описаны
с помощью классического уравнения ангармониче-
ского осциллятора. Несмотря на “классичность” дан-
ной модели, она оказалась достаточно плодовитой, в
частности, именно из нее впервые было предсказа-
но наличие гигантской нелинейности у ряда веществ
в ТГц спектральном диапазоне [28]. При этом тео-
ретические оценки коэффициента нелинейного по-
казателя преломления, полученные с помощью дан-
ной модели, прекрасно соответствуют всем существу-
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ющим на данный момент экспериментальным дан-
ным [15, 18, 20]. Более того, согласно теории коле-
бательной нелинейности n2 прямо пропорционален
(для сред с гигантской ТГц нелинейностью) квад-
рату коэффициента теплового расширения вещества
αT , который, как известно, зависит от температуры.
В частности для воды он равен нулю при 4 ◦C, откуда
следует, что при данной температуре n2 воды также
должен быть близок к нулю. Этот факт стал пово-
дом для сомнений в справедливости теории колеба-
тельной нелинейности, например, у авторов работы
[23], которые на эксперименте не обнаружили ника-
кой разницы в нелинейном поглощении водой ТГц
излучения при 21 ◦C и 4 ◦C. Для разрешения этих со-
мнений авторы [29] экспериментально получили тем-
пературную зависимость коэффициента нелинейного
показателя преломления воды в ТГц диапазоне, ко-
торая прекрасно согласуется с предсказаниями тео-
рии колебательной нелинейности. Таким образом, су-
ществуют серьезные основания полагать, что гигант-
ская ТГц нелинейность действительно имеет колеба-
тельную природу.

Согласно теории колебательной нелинейно-
сти поляризационный отклик P = Plin + Pnl

изотропной диэлектрической среды в поле линейно-
поляризованного ТГц излучения может быть описан
системой параметрически связанных скалярных
уравнений [30]



















P̈ v
lin + γvṖ

v
lin + ω2

0,vP
v
lin = qvNvαvE

P̈ v
nl + γvṖ

v
nl + ω2

0,vP
v
nl = RP v

lin − b[P v
lin]

3

q2vN
2
v

R̈ + γvṘ+ ω2
0,vR = 2a2[P v

lin]
2/q2vN

2
v ,

(1)

где точка указывает на операцию дифференцииро-
вания по времени, P (v)

lin и P
(v)
nl – линейная и нели-

нейная поляризации колебательной природы соот-
ветственно; ω0,v – центральная частота фундамен-
тальной полосы поглощения валентной колебатель-
ной моды (в данной модели полагается, что доми-
нирующий вклад в нелинейное изменение показате-
ля преломления вносит только одна валентная коле-
бательная мода, поэтому достаточно учесть только
одну резонансную частоту; при необходимости мож-
но учесть наличие нескольких колебательных мод,
как это сделано в работе [19]); γv – ширина колеба-
тельной полосы поглощения; qv – эффективный за-
ряд колебательной моды; Nv – концентрация моле-
кулярных осцилляторов в веществе; αv = qv/mv, где
mv – эффективная масса молекулярного осциллято-
ра; E – напряженность электрического поля излуче-
ния; a и b – коэффициенты, характеризующие вели-

чину квадратичного и кубического ангармонизма мо-
лекулярных колебаний, соответственно;R – функци-
онал, учитывающий вклад локального ангармонизма
молекулярных колебаний в кубический макроскопи-
ческий поляризационный отклик, который присут-
ствует даже в изотропных средах, если они состо-
ят из ассиметричных молекул. Поскольку в рассмат-
риваемых двухволновых экспериментах в среде рас-
пространяется, помимо ТГц волны, также и волна
другой частоты, которая может быть как ТГц, так
и оптической, то систему (1) для корректного уче-
та линейной дисперсии необходимо дополнить элек-
тронным осциллятором, описывающим линейный по-
ляризационный отклик, возникающий в результате
взаимодействия излучения с электронными перехо-
дами

P̈ el
lin + γelṖ

el
lin + ω2

0,elP
el
lin = AE, (2)

который, хотя и совпадает по форме с уравнением,
описывающим линейный поляризационный отклик
колебательной природы, тем не менее имеет прин-
ципиально иную физическую природу. Здесь ω0,el –
центральная частота резонансного электронного пе-
рехода, γel характеризует ширину этого перехода,
A – некоторый экспериментально определяемый ко-
эффициент, пропорциональный силе электронного
осциллятора. Очевидно, что Plin = P v

lin + P el
lin.

Использование уравнений (1) и (2) подразумева-
ет, что ТГц волна индуцирует нелинейный отклик
только колебательной природы (что оправдано, так
как частоты электронных переходов существенно от-
стоят от колебательных частот), а зондирующая вол-
на в силу своей маломощности вносит вклад только
в линейный отклик. Проанализируем далее поляри-
зационный отклик вещества при его одновременном
возуждении монохроматическим излучением на ча-
стотах ωp и ωz, т.е. когда поле, возбуждающее веще-
ство, задается выражением

E =
1

2
Epe

iωpt + c.c. +
1

2
Eze

iωzt + c.c., (3)

где Ep и Ez – амплитуды волны накачки и зондиру-
ющего излучения соответственно, причем Ep ≫ Ez .

В таком случае линейный поляризационный от-
клик колебательного (v) и электронного (el) осцил-
ляторов описывается выражениями

P
v(el)
lin =

1

2
P

v(el)
0,ωp

eiωpt +

+
1

2
P

v(el)
0,ωz

eiωzt + c.c., (4)

где

P
v(el)
0,ωp

=
qv(el)Nv(el)αv(el)

ω2
0,v(el) − ω2

p + iγv(el)ωp
Ep, (5)
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P
v(el)
0,ωz

=
qv(el)Nv(el)αv(el)

ω2
0,v(el) − ω2

z + iγv(el)ωz
Ez . (6)

Линейная поляризация P v
lin порождает кубиче-

ский макроскопический нелинейный отклик веще-
ства, а также индуцирует локальный квадратичный
ангармонизм молекулярных колебаний, который то-
же вносит вклад в макроскопический кубический
нелинейный поляризационный отклик среды. Квад-
ратичный вклад описывается выражением

R = R0 +
1

2
R2ωpe

2iωpt +
1

2
R2ωze

2iωzt +

+
1

2
Rωse

iωst +
1

2
R∆ωe

i∆ωt + c.c., (7)

где

R0 =
a2

q2vN
2
vω

2
0,v

(|P v
0,ωp

|2 + |P v
0,ωz

|2), (8)

R2ωp(z)
=

a2(P v
0,ωp(z)

)2/q2vN
2
v

ω2
0,v − 4ω2

p(z) + 2iγvωp(z)
, (9)

Rωs =
2a2P v

0,ωp
P v
0,ωz

/q2vN
2
v

ω2
0,v − ω2

s + iγvωs
, (10)

R∆ω =
2a2(P v

0,ωp
)∗P v

0,ωz
/q2vN

2
v

ω2
0,v −∆ω2 + iγv∆ω

. (11)

Здесь ωs = ωz + ωp и ∆ω = ωz − ωp. Кубический
нелинейный отклик P v

nl возбуждается внешним по-
лем на частотах, соответствующим различным ком-
бинациям частот ωp и ωz, однако в рамках рассмат-
риваемой задачи нас интересует отклик вещества
только на частотах ωp и ωz. Последний возбуждается
эффективным полем

1

4

[

2R0P
v
0,ωz

+R2ωz (P
v
0,ωz

)∗ +

+Rωs(P
v
0,ωp

)∗ +R∆ωP
v
0,ωp

−

− 3b

2q2vN
2
v

(

|P v
0,ωz

|2 + 2|P v
0,ωp

|2
)

P v
0,ωz

]

eiωzt (12)

и описывается выражением

P v
nl,ωz

=
3

2
(χ(3)

v,ωz
|Ep|2 +

χ
(3)
el,ωz

|Ez |2)
Ez

2
eiωzt + c.c., (13)

где

χ(3)
v,ωz

=

(

2a2
2ω2

0,v − ω2
s + iγvωs

ω2
0,v(ω

2
0,v − ω2

s + iγvωs)
+

+
2a2

ω2
0,v −∆ω2 + iγv∆ω

− 3b

)

×

×
(ω2

0,v − ω2
z + iγvωz)

−2

|ω2
0,v − ω2

p + iγvωp|2
qvNvα

3
v

3
, (14)

χ
(3)
el,ωz

=

(

2a2
3ω2

0,v − 8ω2
z + 4iγvωz

ω2
0,v(ω

2
0,v − 4ω2

z + 2iγvωz)
− 3b

)

×
(ω2

0,v − ω2
z + iγvωz)

−2

|ω2
0,v − ω2

z + iγvωz|2
qvNvα

3
v

6
. (15)

Поскольку интенсивность зондирующей волны
существенно меньше интенсивности волны накачки,
то слагаемым (15) в (13) можно пренебречь. В та-
ком случае кубический нелинейный отклик на час-
тоте ωz определяется кубической восприимчивостью
χ
(3)
v,ωz ≡ χ(3)(ωz;ωz, ωp,−ωp). Для того, чтобы полу-

чить из кубической воспримчивости выражение для
нелинейного коэффициента, запишем полную поля-
ризацию среды на частоте ωz

Pωz =

(

χ(1)
ωz

+
3

4
χ(3)
v,ωz

|Ep|2
)

Ez

2
eiωzt, (16)

где

χ(1)
ωz

=
qvNvαv

ω2
0,v − ω2

z + iγvωv
+

A

ω2
0,el − ω2

z + iγelωel
(17)

– линейная восприимчивость на частоте ωz. Из (16)
следует, что показатель преломления для зондирую-
щей волны, находящейся в поле высокоинтенсивного
ТГц излучения, записывается в виде

nz = n0(ωz) +
1

2
ncross
2 (ωz)|Ep|2, (18)

где n0(ωz) – линейный показатель прелом-
ления на частоте зондирующего излучения,
ncross
2 (ωz) = 6πχ(3)(ωz ;ωz, ωp,−ωp)/n0(ωz). Вы-

ражение для n2(ωp) получается аналогичным
образом при рассмотрении нелинейного отклика
среды на частоте ωp для второго уравнения системы
(1). В таком случае для волны накачки

np = n0(ωp) +
1

2
n2(ωp)|Ep|2, (19)

где n2(ωp) = 3πχ
(3)
v,ωp/n0(ωp) и

χ(3)
v,ωp

= (2a2
3ω2

0,v − 8ω2
p + 4iγvωp

ω2
0,v(ω

2
0,v − 4ω2

p + 2iγvωp)
−

− 3b)×
(ω2

0,v − ω2
p + iγvωp)

−2

|ω2
0,v − ω2

p + iγvωv|2
qvNvα

3
v

3
. (20)

Заметим, что коэффициент ncross
2 в два раза боль-

ше коэффициента n2 даже при ωz = ωp, поскольку
волна накачки и зондирующее излучение могут быть
разделены пространственно [14]. Это явление также
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известно, как эффект запаздывания слабой волны
(weak-wave retardation) [31]. Чтобы установить связь
между коэффициентами ncross

2 (ωz) и n2(ωp), рассмот-
рим отношение их действительных частей, при этом
учтем, что для сред с гигантской ТГц нелинейностью
коэффициентом b можно пренебречь [32]

ncross
2,Re (ωz)

n2,Re(ωp)
=

=
2n0(ωp)

n0(ωz)
Re

[(

2ω2
0,v − ω2

s + iγvωs

ω2
0,v(ω

2
0,v − ω2

s + iγvωs)
+

+
1

ω2
0,v −∆ω2 + iγv∆ω

)

(ω2
0,v − ω2

z + iγvωz)
−2

]

/

Re

[

3ω2
0,v − 8ω2

p + 4iγvωp

ω2
0,v(ω

2
0,v − 4ω2

p + 2iγvωp)(ω2
0,v − ω2

p + iγvωp)2

]

.

(21)

Для оценки этого выражения достаточно знать
частоты излучения зонда и накачки, значения ли-
нейного показателя преломления на этих частотах,
а также центральную частоту фундаментальной по-
лосы поглощения валентной колебательной моды и
ее ширину. Оценки этого выражения и способы его
упрощения обсуждаются в следующем разделе.

3. Численные оценки. Для численных оценок
выражения (21) рассмотрим два хорошо изученных
материала – воду H2O и кварцевое стекло SiO2. Фун-
даментальные валентные колебательные полосы, ко-
торые определяют нелинейный отклик колебатель-
ной природы этих веществ в ТГц диапазоне, имеют
максимум на 100ТГц [33] и 32.8ТГц [34], соответ-
ственно, а ширины этих полос составляют 10.6 [33]
ТГц и 3 ТГц [34]. На рисунке 1 для кварцевого стек-
ла и воды изображена зависимость отношения (21)
от частоты зондирующего излучения при ωp/2π = 1.
Данные о показателе преломления этих сред взяты
из работ [33, 35] и [34, 36, 37] соответственно. Из
графиков 1a, c видно, что в ТГц диапазоне нелиней-
ный коэффициент ncross

2 , превышая n2, возрастает c
ростом частоты зондирующего излучения, посколь-
ку суммарная частота ωs приближается к резонанс-
ной, уменьшая знаменатель выражения (14). В оп-
тическом диапазоне (графики 1b, d) наблюдается об-
ратная ситуация: ncross

2 меньше n2 на несколько по-
рядков и убывает с ростом частоты, поскольку сум-
марная и разностные частоты в (21) становятся су-
щественно больше собственной частоты валентных
колебаний среды, увеличивая знаменатель выраже-
ния (14).

В некоторых случаях, например при рассмот-
рении ТГц эффекта Керра, выражение (21) мож-

Рис. 1. (Цветной онлайн) Зависимость отно-
шения нелинейного коэффициента n

(cross)
2 =

= 6πχ(3)(ωz;ωz, ωp,−ωp)/n0(ωz) к коэффи-
циенту нелинейного показателя преломления
n2 = 3πχ(3)(ωp;ωp, ωp,−ωp)/n0(ωp) от централь-
ной частоты зондирующего излучения ωz при
ωp/2π = 1 ТГц для случая: (a) – воды и ТГц зон-
дирующего излучения; (b) – воды и оптического
зондирующего излучения; (c) – кварцевого стекла и
ТГц зондирующего излучения; (d) – кварцевого стекла
и оптического зондирующего излучения

но существенно упростить, поскольку типичные цен-
тральные частоты спектра, которые используются в
таких экспериментах составляют порядка ωp/2π =

1ТГц и порядка ωz/2π = 375ТГц (800 нм) [10, 11].
В таком случае можно приближенно положить ωs ≈
ωz, ∆ω ≈ ωz, а также ω0,v ≫ γv, ωp, что существенно
упростит выражение (21)

ncross
2 (ωz)

n2(ωp)
≈ 2n0(ωp)

3n0(ωz)
s4 ×

×6(1− s2)g2s2 + (1− 3s2)(1− s2)3 − g4

[(s2 − 1)2 + g2]
3 , (22)

где s = ω0,v/ωz, g = γv/ωz. Заметим, что слагаемые
порядка γv/ωz не могут быть опущены поскольку
они сравнимы по величине со слагаемыми порядка
ω0,v/ωz. Из (22) видно, что величина ncross

2 /n2 опре-
деляется отношением оптической частоты к ТГц, по-
скольку стремится при больших ωz к отношению
ω4
p/ω

4
z .

Благодаря тому, что с помощью ТГц эффекта
Керра исследовано большое количество материалов,
результаты расчетов по полученным в настоящей ра-
боте формулам можно сравнить с эксперименталь-
ными данными. Коэффициент нелинейного показа-
теля преломления воды в ТГц диапазоне составляет
порядка 5 × 10−10 см2/Вт [18]; n2 кварцевого стекла
в ТГц диапазоне не измерялся (известны только из-
мерения, выполненные для кристаллического квар-
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ца [19]). Линейный показатель преломления воды
составляет n0(800 нм)= 1.329 [33], n0(1 ТГц)= 2.13

[35]; для кварцевого стекла: n0(800 нм)= 1.453 [38],
n0(1 ТГц)=1.962 [39]. Подставляя эти значения в (22)
мы получаем для воды ncross

2 /n2 ≈ 5 × 10−3, отку-
да, соответственно, следует ncross

2 ≈ 3×10−12 см2/Вт.
Экспериментальное значение, измеренное в ТГц эф-
фекте Керра, составляет 4× 10−12 см2/Вт [11].

Для кварцевого стекла ncross
2 /n2 ≈ 5×10−5, одна-

ко ввиду отсутствия экспериментально измеренного
n2, значение ncross

2 необходимо рассчитать напрямую
из выражения (14), используя соотношения для ко-
эффициентов [28]

a = −
mvω

4
0,vL0

kB
αT , (23)

где L0 – диаметр молекулы (постоянная решетки
в случае кристаллических тел), kB – постоянная
Больцмана и αT – коэффициент теплового расши-
рения;

b =
6πq2vNvω0,v

~(n2
0,v − 1)

, (24)

где ~ – приведенная постоянная Планка, n0,v – часть
линейного показателя преломления, обусловленная
валентыми колебаниями, вдали от резонанса (ωp ≪
≪ ω0,v);

α =
ω2
0,v

4πqvNv
(n2

0,v − 1). (25)

Используя эти выражения, а также значения ма-
териальных параметров, которые приведены в При-
ложении, получаем из формулы (14) для кварце-
вого стекла ncross

2 ≈ 2 × 10−16 см2/Вт (экспери-
ментальное значение из ТГц эффекта Керра 3 ×
10−16 см2/Вт [10]). Из (21) также можно оценить
коэффициент нелинейного показателя преломления
кварцевого стекла n2 ≈ 3× 10−12 см2/Вт, откуда, ис-
пользуя расчитанное выше отношение двух нелиней-
ных коэффициентов, мы получаем то же значение
ncross
2 ≈ 2 × 10−16 см2/Вт. Таким образом, все по-

лученные оценки прекрасно соответствуют экспери-
ментальным данным.

4. Заключение. В настоящей работе из тео-
рии колебательной нелинейности, основанной на
гипотезе, согласно которой нелинейность показа-
теля преломления в ТГц спектральном диапазоне
определяется ангармонизмом валентных молеку-
лярных колебаний (stretching vibrations), выведено
соотношение, устанавливающее аналитическую
связь между коэффициентом нелинейного по-
казателя преломления колебательной природы

n2 = 3πχ(3)(ωp;ωp, ωp,−ωp)/n0(ωp), характеризую-
щим эффекты нелинейного самовоздействия ТГц
излучения на частоте ωp в веществе, и коэффи-

циентом n
(cross)
2 = 6πχ(3)(ωz ;ωz, ωp,−ωp)/n0(ωz),

характеризующим эффекты перекрестного взаимо-
действия маломощного зондирующего излучения на
частоте ωz и высокоинтенсивного ТГц излучения
накачки на частоте ωp, при их распространении в
веществе. Для численной оценки этого соотноше-
ния для заданных монохроматических компонент
излучения зонда и накачки достаточно знать
центральную частоту доминирующей валентной
колебательной полосы поглощения материала и ее
ширину. Это дает возможность оценивать величину
нелинейного набега фазы зондирующего импуль-
са в экспериментах типа pump−probe, используя
разложение электрического поля импульса по мо-
нохроматическим компонентам в интеграл Фурье,
что важно как для спектроскопических измерений,
так и для создания устройств управления излу-
чением на основе нелинейных интерферометров.
Показано, что для воды и кварцевого стекла отно-
шение ncross

2 (ωz)/n2(ωp) при центральных частотах
ωp/2π = 1ТГц и ωp/2π = 375ТГц (800 нм) составля-
ет 5× 10−3 и 5× 10−5 соответственно, что прекрасно
согласуется с экспериментальными данными.

Приложение

Для оценки коэффициентов (23), (24), (25) ис-
пользовались следующие значения материальных
параметров: эффективная масса рассчитывалась
аналогично [28] по формуле приведенной массы
осциллятора Si–O mv = mSimO/(mSi + mO), где
mSi,mO – массы атомов кремния и кислорода,
соответственно; L0 = 5 Å [40]; αT = 2.1 × 10−5 K−1

[41] (несмотря на то, что макроскопический коэф-
фициент теплового расширения кварцевого стекла
составляет 0.55 × 10−6 K−1, в работе [41] было
показано, что на микроскопическом уровне он
больше почти на два порядка); величина заряда
qv принималась равной элементарному заряду
4.8 × 10−10 Фр; концентрация молекулярных осцил-
ляторов расчитывалась как Nv = ρ/(mSi + 2mO),
где ρ = 2.20 г/см3 – плотность кварцевого стекла
[40]; колебательная часть нерезонансного линейного
показателя преломления рассчитывалась по форму-
ле n0,v =

√

1 + n2
0(ωp)− n2

el(ωp), где nel(ωp) = 1.7

[34] – часть показателя преломления в ТГц диапа-
зоне, обусловленная электронными и невалентными
колебательными переходами.

Автор статьи выражает благодарность профессо-
ру С. А. Козлову за полезные обсуждения.
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