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Исследована возможность фемтосекундной лазерной структурной микромодификации (микромар-
кировки) алмаза через слой твердотельной иммерсионной среды из халькогенидного стекла Ge7Sb93 на
длине волны 1.55 мкм. Измерен коэффициент двухфотонного поглощения Ge7Sb93, который составил
β2 = 0.09 ± 0.01 см/ГВт, допускающий распространение интенсивного фемтосекундного лазерного излу-
чения в этом спектральном диапазоне через реалистично тонкие (< 0.1–1 мм) слои иммерсии. Несмотря
на нелинейное поглощение и оптическое повреждение в объеме иммерсионной среды, в тестовых ре-
жимах записи в объеме алмаза наблюдались фотолюминесцентные микрометки, более однородные при
меньшей экспозиции и энергии импульсов.
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1. Природные алмазы обладают многими выдаю-
щимися физико-химическими свойствами [1], а так-
же чрезвычайно ценятся в ювелирной промышлен-
ности. Важной задачей является выявление внутрен-
ней структуры алмаза для обнаружения различных
дефектов и включений. Это необходимо для размет-
ки алмаза на будущие бриллианты. Однако непра-
вильная неравномерная форма природных алмазов
приводит к трудности ввода ИК [2] или видимого [3]
излучения внутрь алмаза и визуализации его объема.
Кроме того, существует проблема ввода излучения
лазерных импульсов в объем неограненных алмазов
и бриллиантов сложной формы, используется для их
неинвазивной маркировки [4]. Для решения данных
проблем может использоваться иммерсионная среда
с показателем преломления практически равным по-
казателю преломления исследуемого образца [5]. В
связи с высоким преломлением алмаза (n = 2.386

для длины волны 1.5 мкм [1]) сложно найти подходя-
щую иммерсионную жидкость. Поэтому, часто в ка-
честве иммерсионного материала применяются твер-
дые среды с высоким показателем преломления [6].

Ранее был продемонстрирован метод использова-
ния в качестве твердотельной иммерсионной среды
ZnS и ZnSe путем высокотемпературной пластиче-
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ской деформации [7, 8]. Он позволил проводить ви-
зуализацию внутренней структуры алмаза в види-
мой области спектра, а также была показана воз-
можность записи и считывания фотолюминесцент-
ных меток в объеме алмаза. Однако процесс запеча-
тывания алмаза в иммерсионную среду данным спо-
собом требует нагрева до высоких температур поряд-
ка 700 ◦С и продувки защитным инертным газом для
предотвращения пирогидролиза. Альтернативой яв-
ляется использование в качестве твердотельной им-
мерсионной среды халькогенидных стекол. За счет
относительно низкой (∼ 500 К) температуры размяг-
чения таких материалов упрощается технология за-
печатывания алмаза внутрь халькогенидной иммер-
сионной среды. Однако, такие материалы, как пра-
вило, непрозрачны в видимой области спектра, хо-
тя являются прозрачными в ближнем и среднем ИК
диапазоне. В работах [9, 10] было показано использо-
вание иммерсии из халькогенидных стекол для ди-
агностики внутренних дефектов алмазов. Недостат-
ком используемых в данных работах составов стекол
является наличие ядовитых As и Br, требующих по-
вышенной осторожности при работе с ними. Твер-
дотельная иммерсия из халькогенидного стекла так-
же использовалась для прецизионных измерений ИК
спектров поглощения природных неограненных ал-
мазов [2]. Однако фемтосекундная лазерная струк-
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Рис. 1. (Цветной онлайн) (a) – Спектры пропускания в видимой области алмаза и Ge7Se93. (b) – Cпектры поглощения
в ИК области алмаза и Ge7Se93. (c) – Экспериментальная схема записи для микромодификации алмаза через слой
иммерсионной среды

турная микромодификация примесных центров, ис-
пользуемая для микромаркировки драгоценных кам-
ней, до сих пор не была продемонстрирована для ал-
маза, помещенного в иммерсионную среду из халь-
когенидного стекла.

Данная работа направлена на исследование воз-
можности фемтосекундной лазерной структурной
микромодификации алмаза через слой иммерсии из
халькогенидного стекла. В качестве материала им-
мерсии мы использовали стекло состава Ge7Se93.
Оно имеет показатель преломления, близкий к ал-
мазу, обладает хорошим пропусканием в ближнем и
среднем ИК диапазоне, а также не содержит ядо-
витого As. Проведена характеризация данного стек-
ла, включая нелинейные свойства. Показана возмож-
ность оптической визуализации и ИК-картирования
через иммерсию из Ge7Se93. Была получена матри-
ца люминесцирующих микрометок в объеме алмаза,
записанная через слой иммерсии фемтосекундными
лазерными импульсами.

2. В данной работе в качестве образца для за-
писи люминесцирующих микрометок использовал-
ся красный синтетический алмаз, полученный мето-
дом HPHT (синтез при высоком давлении и высо-
кой температуре) и подвергнутый облучению элек-
тронным пучком (3 МэВ, 5 × 1018 см−2), а также по-
следующему 30-минутному отжигу при температуре
1200 градусов. Алмаз представляет из себя пластину

(3.5 × 2.2 × 0.9мм3). Согласно ИК фурье спектро-
скопии в алмазе примесь азота преимущественно на-
ходится в виде C центров (одиночный замещающий
атом азота), поэтому алмаз был отнесен к типу Ib.

В качестве иммерсионной среды использовалось
халькогенидное стекло с составом Ge7Se93. Для по-
лучения особо чистого стекла Ge7Se93 использова-
ли германий марки 6N и селен 6N, дополнитель-
но очищенный двукратной дистилляцией в вакуу-
ме. Гранулы германия предварительно прокаливали
в вакууме при 700 ◦С для удаления поверхностной
пленки оксида германия(II). Синтез стекла Ge7Se93
проводили в вакуумированных кварцевых ампулах
с использованием химико-дистилляционного метода
очистки [11, 12]. В качестве химических геттеров (по-
глотителей) примесей кислорода и водорода в ис-
ходную шихту добавляли 500 ppmw Al и 1000 ppmw
AlCl3. После плавления шихты с геттерами в ваку-
умированной кварцевой ампуле в качающейся му-
фельной печи при 900 ◦С в течение 7 ч проводили
двукратную вакуумную перегонку стеклообразую-
щего расплава с последующим гомогенизирующим
плавлением, закалкой и отжигом стекла. Температу-
ра стеклования стекла Ge7Se93, по данным исследо-
вания методом дифференциально-сканирующей ка-
лориметрии на микрокалориметре STA 409 PC Luxx
(Netzsch, Германия) при скорости нагревания образ-
ца 10 град/мин, составила 70 ◦С. Благодаря низкой
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Рис. 2. (Цветной онлайн) (a) – Ячейка для запечатывания алмаза в иммерсионную среду. (b) – Алмаз, помещаемый в
иммерсионную среду. (c) – Запечатанный в иммерсию алмаз. (d) – визуализация алмаза в иммерсионной среде

температуре стеклования, стекло Ge7Se93 уже при
температуре 160 ◦C размягчается достаточно для то-
го, чтобы поместить алмаз внутрь иммерсии.

Спектры пропускания образцов в видимом диапа-
зоне были получены на спектрофотометре СФ-2000
(ОКБ Спектр, Россия) (рис. 1a). Измерение пропус-
кания образцов в ИК области производилось на изме-
рительном комплексе, включающем ИК фурье спек-
трометр ФТ-801 (СИМЕКС, Россия) и ИК микро-
скоп МИКРАН-3 (СИМЕКС, Россия) (рис. 1b).

Микромодификация алмаза и измерения нели-
нейного пропускания по методике I-scan [13] про-
водились на длине волны 1.55 мкм. Для получения
ультракоротких импульсов с данной длиной волны
иттербиевый фемтосекундный усилитель TETA-20
(Авеста-Проект, Россия) использовался для накачки
оптического параметрического генератора PARUS
(Авеста-Проект, Россия). Длительность импульса,
измеренная на автокорреляторе ASF-30 (Авеста-
Проект, Россия), составляла τ = 130фс, часто-
та следования импульсов ν = 10 кГц. Для изме-
рения нелинейного пропускания иммерсионной сре-
ды излучение фокусировалось объективом с число-
вой апертурой NA= 0.03. При записи люминесциру-
ющих микрометок излучение с варьируемой энер-
гией (170, 220, 270, 350, 440, 520 нДж) и временем
экспозиции (1, 3, 5, 10, 20, 40, 60 c) фокусирова-
лось через слой иммерсии 400 мкм внутрь образца
на глубину 300 мкм (с учетом показателя прелом-
ления) с помощью объектива с числовой апертурой
NA= 0.55 (оцениваемый диапазон интенсивности из-
лучения без учета нелинейно-оптических потерь –
30–100 ТВт/см2). Визуализация образца через слой
иммерсии производилась с помощью камеры MER-
132-30UM (DAHENG IMAGING, China). Схема за-
писи приведена на рис. 1с. После записи алмаз был
извлечен из иммерсии и было выполнено считыва-
ние фотолюминесцентных меток на 3D сканирую-

щем конфокальном микроскопе CONFOTEC MR520
(SOL Instruments, Беларусь).

Рис. 3. (Цветной онлайн) Зависимость коэффициен-
та нелинейного пропускания от интенсивности для
Ge7Se93. Точками представлены экспериментальные
данные, сплошной линией – данные теоретического
расчета по формуле (1) с коэффициентом двухфотон-
ного поглощения β2 = 0.09

Для экспериментальных измерений коэффициен-
та нелинейного пропускания стекла Ge7Se93 была
сформирована пластина толщиной 1.2 мм. Для ви-
зуализации, ИК картирования и записи люминес-
цирующих микрометок алмаз был помещен внутрь
куба из Ge7Se93 со стороной 5 мм. Запечатывание
алмаза в куб проводилось с помощью специальной
формы (рис. 2a). Форма изготовлена из алюминия,
а ее внутренние стенки облицованы пластинками из
сапфира, для получения меньшей шероховатости по-
верхности. Алмаз (рис. 2b) и внутренняя поверхность
формы очищались с помощью изопропилового спир-
та. Затем форма наполнялась микропорошком халь-
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Рис. 4. (Цветной онлайн) Спектры пропускания в области с алмазом и без него (a), карты поглощения запечатан-
ного алмаза в области отсутствия поглощения на 4004 см−1 (b), двухфононного решеточного поглощения алмаза на
2160 см−1 (c), поглощения С-центров алмаза на 1130 см−1 (d). Положение алмаза показано пунктирной линией

когенидного стекла и нагревалась на индукционной
плите до температуры 170 ◦C в атмосферном воз-
духе. При данной температуре стекло размягчает-
ся, но она недостаточна для его закипания, приводя-
щему к образованию нежелательных пузырьков воз-
духа в объеме стекла. После этого в мягкое стекло
погружался алмаз таким образом, чтобы его сторо-
ны были параллельны граням куба. После остывания
формы до комнатной температуры она разбиралась
на составные части для извлечения куба из халь-
когенидного стекла с запечатанным внутри алмазом
(рис. 2c). В процессе нагрева и охлаждения в иммер-
сионной среде появились включения, которые могут
быть вызваны сильным нагревом или недостаточной
очисткой исходных материалов, однако в оптический
микроскоп, оснащенный камерой, можно наблюдать
запечатанный алмаз (рис. 2d).

3. Иммерсионная среда Ge7Se93 непрозрачна в ви-
димой области спектра, поэтому для записи люми-
несцирующих микрометок была выбрана длина вол-
ны 1.55 мкм. Данная длина волны является стан-
дартной для многих – в частности телекоммуника-
ционных – применений, алмаз не имеет на ней зна-
чительного поглощения, а также она находится до-
статочно далеко от края поглощения используемого
халькогенидного стекла.

Для анализа и контроля эффектов, возникаю-
щих при фемтосекундном лазерном облучении этой
иммерсионной среды, необходимо знать ее нелиней-
ные оптические свойства. В частности, для интен-
сивностей лазерных фемтосекундных импульсов от
ГВт/см2 до десятков ТВт/см2 многофотонное по-
глощение является одним из основных механизмов
ослабления излучения. Для структурной микромо-
дификации алмаза может требоваться достаточно
высокая интенсивность лазерного излучения в об-
ласти фокусировки лазерного пучка, что приводит
к увеличению вклада нелинейного ослабления, вы-
званного многофотонным поглощением. В нашей ра-
боте при измерении нелинейного пропускания длина
Рэлея сфокусированного пучка составила ∼ 7 мм в
воздухе и ∼ 17 мм в материале, что превышает тол-
щину исследуемой пластины стекла, поэтому коэф-
фициент нелинейного пропускания образца T , обу-
словленный многофотонным поглощением, зависит
от интенсивности I как [14]

T (I) =
T0

(1 + (n− 1)βnH(1−R)n−1In−1)
1

n−1

, (1)

где T0 – линейный коэффициент пропускания об-
разца, учитывающий потери на отражение на двух
гранях и линейное поглощение, βn – коэффици-
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Рис. 5. (Цветной онлайн) (a) – Визуализация объема иммерсии над модифицируемой областью после облучения. (b) –
3D-карта люминесценции микрометок на длине волны 680 нм при накачке 532 нм. Спектры люминесценции микроме-
ток при накачке 532 нм (c) и 405 нм (d) при максимальной интенсивности и времени экспозиции

ент n-фотонного поглощения среды, H – толщи-
на образца, R – коэффициент отражения на гра-
нице раздела воздух–среда. В результате аппрокси-
мации экспериментальных данных наименьшая раз-
ностная относительная ошибка была получена при
n = 2, соответствующему двухфотонному поглоще-
нию. Для Ge7Se93 коэффициент двухфотонного по-
глощения составил β2 = 0.09 ± 0.01 см/ГВт (рис. 3).
Это допускает распространение довольно интенсив-
ного фемтосекундного лазерного излучения в этом
спектральном диапазоне через слои иммерсии с тол-
щиной H меньшей, чем характерная длина двухфо-
тонного поглощения 1/(β2I), т.е. при условии H <

< 1/β2I). Для минимальных реалистичных значений
H < 0.1−1мм, позволяющих сгладить иммерсион-
ным слоем шероховатость неполированного алмаза,
величина интенсивности при этом не должна превы-
шать 0.1–1 ТВт/см2, что возможно при положении
фокуса на существенной глубине внутри алмаза.

Было проведено картирование куба с запе-
чатанным алмазом на ИК фурье-спектрометре
(рис. 4), размер области картирования составил
3300 × 4500мкм2, шаг – 150 мкм. На полученных
картах в сечении куба можно наблюдать область с
алмазом и область без алмаза, состоящей только из
иммерсионной среды. В ИК-спектрах пропускания
в области без алмаза наблюдается полоса погло-
щения в области 2030–2280 см−1, соответствующая
иммерсионной среде. В области с алмазом можно
наблюдать пики поглощения C-центров и пики
собственного поглощения алмаза (рис. 4a). Были
построены карты по трем выбранным спектраль-
ным областям: 4004 см−1, 2160 см−1, 1130 см−1. В
спектральной области 4004 см−1, где ни алмаз, ни
Ge7Se93 не имеют характерных пиков поглощения
[1], зона с алмазом и без него отличается незначи-
тельно (рис. 4b). В спектральных областях 2160 см−1

(рис. 4с) и 1130 см−1 (рис. 4d), соответствующих
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пикам собственного двухфононного решеточного
поглощения алмаза и поглощения C-центров, можно
явно наблюдать область расположения алмаза.

После записи фотолюминесцентных меток был
визуализирован объем иммерсии над областью за-
писи (рис. 5a). В нем были найдены повреждения,
образовавшиеся из-за низкой лучевой и термиче-
ской стойкости используемого халькогенидного стек-
ла, которые сильнее проявляются при увеличении
энергии лазерных импульсов и времени экспозиции.
После извлечения алмаза из иммерсии были изме-
рены спектры люминесценции полученных микроме-
ток. Из 3D карты люминесценции видно, что при
увеличении интенсивности модифицирующего излу-
чения и времени экспозиции происходит искажение
фотолюминесцентной микрометки (рис. 5b), возни-
кающий из-за искажения пучка на повреждениях
в иммерсионной среде. В спектрах люминесции на-
блюдается снижение концентрации NV0 и NV− цен-
тров (рис. 5с) с одновременным ростом концентра-
ции центров H3, H4 в области лазерного облуче-
ния (рис. 5d). Такие трансформации центров соот-
ветствуют результатам, полученных в работах по
структурной микромодификации алмаза при низких
интенсивностях фемтосекундных лазерных импуль-
сов [15] или в данном цветном алмазе из-за высоко-
го нелинейного поглощения для высокоинтенсивных
фемтосекундных лазерных импульсов [16].

4. В заключение, в данной работе была пока-
зана возможность фемтосекундной лазерной струк-
турной микромодификации (микромаркировки) ал-
маза через слой твердотельной иммерсионной сре-
ды из халькогенидного стекла Ge7Sb93 на длине
волны 1.55 мкм. Измерен коэффициент двухфотон-
ного поглощения Ge7Sb93, который составил β2 =

= 0.09± 0.01 см/ГВт, допускающий распространение
интенсивного фемтосекундного лазерного излучения
в этом спектральном диапазоне через реалистично
тонкие (< 0.1–1 мм) слои иммерсии. Поэтому, несмот-
ря на возникающие при лазерной записи нелинейное
поглощение и оптическое повреждение в объеме им-
мерсионной среды, в тестовых режимах записи воз-
можно наблюдение в объеме алмаза записанных фо-
толюминесцентных микрометок, более однородных
при меньшей экспозиции и энергии импульсов.
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