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Предложен метод преобразования квазимонохроматического излучения без отдачи (мессбауэровско-
го излучения) с энергией фотонов 93.3 кэВ, испускаемого радиоактивным мессбауэровским источником
67Ga или 67Cu, в последовательность коротких импульсов с индивидуально и независимо управляемыми
по требованию моментами формирования импульсов, а также пиковой интенсивностью, длительностью
и формой каждого импульса. Метод основан на пропускании мессбауэровских (безотдачных) фотонов с
энергией 93.3 кэВ от источника через среду, содержащую резонансно поглощающие ядра 67Zn. Импульсы
формируются благодаря быстрым возвратно-поступательным движениям источника относительно по-
глотителя в заданные моменты времени вдоль направления распространения фотонов на расстояния, не
превышающие длины волны излучения. Получаемые таким образом последовательности импульсов γ-
излучения аналогичны оцифровке информации, переносимой электромагнитными волнами. Они также
могут быть использованы для развития мессбауэровской спектроскопии атомных и субатомных струк-
тур, а также могут открыть новые возможности для рентгеновской квантовой оптики.
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I. Введение. Методы генерации когерентного
электромагнитного излучения в виде коротких им-
пульсов с регулируемыми спектрально-временными
характеристиками в различных частотных диапазо-
нах от радиоволнового до рентгеновского, являются
востребованными и интенсивно развиваются в связи
с многочисленными применениями в науке и техно-
логиях. Радиочастотное и оптическое излучение в ви-
де импульсных последовательностей с управляемы-
ми характеристиками типично для цифровых сетей
связи и является основой для передачи квантовой ин-
формации. Импульсное излучение рентгеновского и
γ-диапазона с управляемыми параметрами привле-
кательно для применения в квантовых коммуникаци-
ях и обработке информации благодаря возможности
фокусировки до ангстремных масштабов, долгожи-
вущим резонансным квантовым переходам в ядрах
для “хранения фотонов” в ядерной когерентности, а
также эффективному детектированию фотонов вы-
сокой энергии.

В настоящее время существует большое количе-
ство методов получения лазерных импульсов с требу-
емыми характеристиками. Однако управлять рент-
геновским излучением с энергией фотонов в десятки
кэВ гораздо сложнее в основном из-за малой длины
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волны такого излучения. Действительно, лазерное
излучение эффективно взаимодействует с атомарны-
ми электронами, оптические свойства которых изме-
няются по требованию различными методами. На-
против, основными эффектами взаимодействия фо-
тонов с длиной волны порядка ангстрема с атомами
являются ионизация и отдача последних. В результа-
те большинство подходов для управления лазерным
излучением не применимо для жесткого рентгенов-
ского излучения.

В то же время фотоны высокой энергии мо-
гут быть резонансными квантовым переходами атом-
ных ядер и эффективно взаимодействовать с ними
без отдачи (мессбауэровское взаимодействие) подоб-
но взаимодействию оптических фотонов с атомар-
ными электронами. Кроме того, в отличие от кван-
товых переходов в атомах, спектральное уширение
мессбауэровских (безотдачных) квантовых перехо-
дов в ядрах обычно близко к естественному ушире-
нию даже при комнатной температуре, а оно, в свою
очередь, может быть очень малым. Например, месс-
бауэровские ядерные переходы с энергией 14.4 кэВ
в нуклиде 57Fe обычно имеют ширину спектраль-
ной линии несколько МГц при комнатной темпера-
туре, что соответствует добротности квантового пе-
рехода порядка 1012 [1]. На два порядка более узкие
спектральные линии (несколько десятков килогерц)
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имеют мессбауэровские переходы с энергией 93.3 кэВ
в ядрах 67Zn, что соответствует добротности ∼ 1015

[1–7]. Это, в частности, служит основой для высоко-
точных спектроскопических измерений частот кван-
товых переходов ядер, которые очень чувствитель-
ны к своему микроскопическому окружению и, сле-
довательно, могут отражать атомную и субатомную
структуру вещества, в которое они внедрены.

Высокие частоты ядерных переходов килоэлек-
тронвольтного диапазона делают эффект Доплера
весьма эффективным инструментом для измерения
и управления частотами этих переходов. Например,
перемещение поглотителя 67Zn относительно источ-
ника с постоянной скоростью всего 170 нм/с вдоль
направления распространения излучения с энергией
фотонов 93.3 кэВ смещает положение его спектраль-
ной линии шириной 13 кГц на ширину линии, вы-
водя поглотитель из резонанса с источником и су-
щественно увеличивая его прозрачность. Эти свой-
ства ядер обусловливают уникально высокую чув-
ствительность и точность мессбауэровской спектро-
скопии при изучении вещества [4, 7]. Они также ле-
жат в основе ряда методов акустического управле-
ния рентгеновскими и γ-фотонами посредством резо-
нансного взаимодействия с атомными ядрами [5, 6], а
также открывают перспективы для разработки гиб-
кого интерфейса между рентгеновскими фотонами и
ядрами.

Относительно большое время распада когерент-
ности мессбауэровских излучающих и поглощающих
ядерных переходов с килоэлектронвольтной энерги-
ей позволяет существенно изменять как спектр, так и
временную зависимость интенсивности γ-излучения
посредством пропускания фотонов через резонанс-
ный поглотитель, который перемещается относи-
тельно источника (или наоборот) в определенные мо-
менты времени или периодически намного быстрее,
чем время распада когерентности соответствующих
ядерных переходов ([5, 6, 8–17] и ссылки в них). Это
происходит потому, что движение вызывает, благо-
даря эффекту Доплера, зависящий от времени фазо-
вый сдвиг между когерентным ядерным поляризаци-
онным откликом (когерентным рассеянным вперед
полем) и падающим полем. Этот фазовый сдвиг из-
меняет характер интерференции между падающим
и рассеянным вперед полями [5, 6, 8–17], которая ле-
жит в основе резонансного взаимодействия между
излучением и ядрами.

Впервые такое акустическое управление интен-
сивностью γ-излучения было реализовано для фо-
тонов с энергией 93.3 кэВ [5, 6]. Было показано, что
скачкообразное перемещение радиоактивного источ-

ника 67Ga относительно оптически толстого резо-
нансного поглотителя 67Zn на расстояние, кратное
половине длины волны фотона, приводило к преоб-
разованию γ-излучения постоянной интенсивности в
короткие импульсы [5, 6]. Интенсивность прошедше-
го поля достигала максимума в моменты, когда рас-
стояние между источником и поглотителем изменя-
лось на (2n + 1)λs/2 (где λs – длина волны фото-
на, n ∈ N), и минимума в моменты, когда расстоя-
ние между источником и поглотителем изменялось
на nλs. В эти моменты имела место соответственно
конструктивная или деструктивная интерференция
падающего и когерентно рассеянного полей [5, 6].

Аналогичные импульсы были получены в случае
излучения с энергией фотонов 14.4 кэВ, испускаемо-
го радиоактивным источником 57Co [8–12], когда ис-
точник [8–10] или поглотитель 57Fe [11–13] скачкооб-
разно смещались в определенные моменты времени.
В недавней публикации [13] этот метод был применен
для оцифровки, кодирования и передачи информа-
ции с использованием фотонов 14.4 кэВ. Стоит так-
же упомянуть получение регулярной последователь-
ности коротких импульсов γ-излучения с помощью
быстрого периодического смещения (вибрации) по-
глотителя относительно источника с частотой, зна-
чительно превышающей скорости распада когерент-
ности соответствующих ядерных переходов [14–16].
В этом случае рассеянное вперед поле приобретает
периодическую фазовую модуляцию [16]. При этом,
правильно подобранные частота и амплитуда моду-
ляции (определяемые частотой и амплитудой коле-
баний поглотителя), а также расстройка между ча-
стотами спектральных линий источника и поглотите-
ля приводят к различным последовательностям им-
пульсов [14, 15], а также могут приводить к подавле-
нию резонансного поглощения [17].

Существует два коммерчески доступных типа ра-
диоактивных источников излучения с энергией фо-
тонов 93.3 кэВ, а именно, источники на основе радио-
нуклидов 67Ga и 67Cu (рис. 1). Современные методы
позволяют получать различные соединения, содер-
жащие 67Ga или 67Cu, которые являются источни-
ками излучения с энергией фотонов 93.3 кэВ различ-
ной интенсивности и спектрального состава [1–6, 18–
21]. Более ранние результаты с 67Zn были получены
в основном с использованием источников 67Ga [2–7].
Недавний прорыв в производстве источников 67Cu с
высокой удельной активностью для задач радиоим-
мунотерапии и однофотонной эмиссионной компью-
терной томографии в медицине [18, 19] открыл новые
возможности для мессбауэровской γ-оптики с погло-
тителями на основе 67Zn.
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В данной статье на примере радиоактивного ис-
точника 67Ga или современного источника 67Cu и по-
глотителя 67Zn предложен метод, который позволя-
ет независимо управлять спектрально-временными
характеристиками γ-излучения. В отличие от более
ранних исследований [5, 6, 9–13], этот метод основан
на быстром возвратно-поступательном смещении
источника относительно резонансного поглотителя
(или наоборот) вдоль направления распространения
фотонов на расстояние, меньшее или равное поло-
вине длины волны излучения. Показано, что этот
тип движения позволяет (i) преобразовывать излу-
чение с энергией фотонов 93.3 кэВ постоянной интен-
сивности в произвольное число импульсов, включая
одиночный импульс; (ii) независимо управлять пи-
ковой интенсивностью каждого импульса; (iii) неза-
висимо управлять длительностью каждого импуль-
са; (iv) независимо управлять временным интерва-
лом между соседними импульсами в последователь-
ности; (v) создавать по требованию индивидуальную
форму каждого импульса.

Статья имеет следующую структуру. В разде-
ле II описана модель и получено решение для ин-
тенсивности излучения, проходящего через оптиче-
ски толстый мессбауэровский резонансный поглоти-
тель 67Zn, который может смещаться относительно
источника (или наоборот) вдоль направления рас-
пространения фотонов. В разделе III кратко описы-
вается физическая картина резонансного поглоще-
ния однофотонного поля в оптически толстом ре-
зонансном поглотителе как интерференция между
падающим и когерентно рассеянным вперед поля-
ми. В разделе IV на примере быстрого возвратно-
поступательного смещения источника относительно
поглотителя показано, что эта интерференция ле-
жит в основе преобразования поля в резонансном
поглотителе. Получено аналитическое решение для
интенсивности излучения в случае достаточно быст-
рого возвратно-поступательного смещения источни-
ка и показано, как характеристики смещения соотно-
сятся с характеристиками получаемых импульсов. В
разделе V приводятся основные результаты работы.

II. Теотретическая модель. Рассмотрим сле-
дующие экспериментальные условия, аналогичные
реализованным в [5, 6]. Излучение с энергией фото-
нов 93.3 кэВ испускается либо радиоактивным месс-
бауэровским источником 67Ga, либо 67Cu (рис. 1, сле-
ва). Оба типа источника выполнены в виде фольги
микронной толщины, закрепленной на пьезоэлектри-
ческом преобразователе. В определенные моменты
времени импульсное напряжение, подаваемое на пре-
образователь, вызывает возвратно-поступательное

смещение источника относительно поглотителя. Аль-
тернативно, поглотитель может перемещаться отно-
сительно источника с тем же результатом [11–17].
Радиоактивный источник стохастически испускает
разделенные во времени одиночные мессбауэровские
фотоны с энергией 93.3 кэВ (рис. 1, слева). Фотоны
распространяются через среду безотдачных (месс-
бауэровских) резонансных ядер 67Zn (рис. 1, справа)
и детектируются за поглотителем. Моменты реги-
страции фотонов измеряются лабораторными часа-
ми и группируются по временным ячейкам дискрети-
зации. Измерение длится фиксированный интервал
времени, который начинается с момента включения
часов и заканчивается их выключением. Эта проце-
дура повторяется многократно. В результате полу-
чается временная зависимость числа фотонов, вы-
шедших из поглотителя, в единицу времени, которая
пропорциональна временной зависимости интенсив-
ности прошедшего излучения.

Вычисление интенсивности электромагнитного
поля I(av)(t), измеренной этим методом, удобно
начать с интенсивности I(t, t0), связанной с де-
тектированием одиночного фотона. Интенсивность
I(t, t0) пропорциональна временной зависимости
вероятности детектирования фотона с энергией
93.3 кэВ в единицу времени, начиная с момента t0,
когда ядро источника оказывается в возбужденном
излучающем состоянии |b〉, и тем самым появляется
возможность испускания фотона с энергией 93.3 кэВ
(рис. 1) [9–17]. Интенсивность поля, связанного с
одиночным фотоном, испускаемым источником в
возбужденном состоянии, можно записать в виде
[5, 6, 9–17]

Is(t, t0) ∝ θ(t− t0) exp[−(t− t0)Γs], (1)

где θ(τ) – функция Хевисайда, а Γs – скорость рас-
пада состояния |b〉 (релаксации населенностей на пе-
реходе |b〉 → |a〉, рис. 1, слева) источника.

В рассматриваемых экспериментальных услови-
ях случайный момент времени t0 не определен, и
результаты измерений усредняются по этому пара-
метру,

I(av)(t) =

t
∫

−∞

N(t0)I(t, t0)dt0, (2)

где N(t0) – среднее число фотонов с энергией
93.3 кэВ, испускаемых радиоактивным источником
в единицу времени в направлении детектирования.
Аналогично [5, 6], ниже предполагается, что N(t0) =

= N = Const.
Как показано в работах [5, 6, 9–17, 23, 24], на входе

в поглотитель 67Zn электрическое поле однофотон-
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Рис. 1. (Цветной онлайн) Схема радиоактивного распа-
да источников 67Ga и 67Cu (слева) и резонансного по-
глощения фотонов с энергией 93.3 кэВ ядром поглоти-
теля 67Zn (справа). Ядро 67Ga распадается (наклонные
стрелки) в результате захвата электрона, превращаясь
в ядро 67Zn в пяти энергетических состояниях, вклю-
чая основное состояние [22]. Ядро 67Cu претерпевает
β−-распад, превращаясь в ядро 67Zn в четырех энер-
гетических состояниях (наклонные стрелки), включая
основное состояние [20, 21]. В рассматриваемом случае
важны только основное и два возбужденных состоя-
ния. Возбужденные состояния ядра 67Zn затем излуча-
тельно распадаются до состояний с более низкой энер-
гией (вертикальные стрелки). Как для 67Ga, так и для
67Cu вероятности распада в состояние |b〉 и в состояние
|c〉 являются величинами одного порядка [20–22]. По-
этому существенная часть фотонов с энергией 93.3 кэВ,
испускаемых при переходе |b〉 → |a〉, не коррелирует с
фотонами с энергией 91.2 кэВ, испускаемыми при пе-
реходе |c〉 → |b〉

ного волнового пакета с энергией 93.3 кэВ, соответ-
ствующее интенсивности (1), может быть представ-
лено в виде классической электромагнитной волны,
электрическое поле которой имеет вид:

Es(t, t0) = E0θ(t− t0)e
−(iωs+γs)(t−t0)+iϕ0 , (3)

где E0 – амплитуда поля, γs = Γs/2 – полуширина
спектрального контура источника, соответствующая
времени жизни состояния |b〉, 1/Γs ≈ 13.3мкс, ωs –
несущая частота поля, соответствующая длине вол-
ны λs ≈ 0.13 Å, ϕ0 – случайная начальная фаза поля.

Однофотонный волновой пакет с энергией фо-
тона 93.3 кэВ распространяется через резонансный
мессбауэровский поглотитель 67Zn (рис. 1, справа).
Ядра 67Zn могут входить в состав металлического
цинка или различных монокристаллических (фоль-
га) и поликристаллических (порошок) соединений,
таких как ZnTe, ZnSe, ZnS, ZnO, ZnF2 [4, 7]. Все по-
глотители могут быть использованы в рамках од-

ной и той же экспериментальной установки, в ко-
торой поглотитель неподвижен (или перемещается с
постоянной скоростью для настройки в резонанс с
источником), а источник закреплен на пьезоэлектри-
ческом преобразователе [5, 6]. В этом случае источ-
ник может перемещаться как единое целое (в преде-
лах поперечного сечения пучка, где фотоны взаимо-
действуют с ядрами поглотителя) вдоль направле-
ния распространения фотонов с функцией смещения
Sshift(t) относительно поглотителя.

Вследствие движения источника однофотонное
поле, падающее на поглотитель, становится фазово-
модулированным из-за эффекта Доплера:

Ein(t, t0) = Es(t, t0)e
iksSshift(t), (4)

где ks = 2π/λs. Тогда поле фотона на выходе из ре-
зонансного поглотителя с мессбауэровской (оптиче-
ской) толщиной Ta и полушириной линии поглоще-
ния γa может быть вычислено как интеграл свертки
падающего поля (4) и функции отклика поглотителя
a(t) [5, 6, 8–12]:

Eout(t, t0) =

∞
∫

−∞

a(t− τ)Ein(τ, t0)dτ, (5)

где

a(t) = e−Te/2 × (6)

× [δ(t)− Taγae
−(iωa+γa)tθ(t)J1(

√

2Taγat)/
√

2Taγat].

В (6) δ(t) – дельта-функция Дирака, J1(x) – функ-
ция Бесселя первого рода первого порядка, ωa –
частота резонансного перехода |1〉 ↔ |2〉 поглоти-
теля 67Zn (рис. 1, справа), которая может отличать-
ся от центральной частоты источника из-за наличия
изомерного сдвига или доплеровского сдвига вслед-
ствие движения источника относительно поглотите-
ля с постоянной скоростью, Te – величина, характе-
ризующая нерезонансное затухание излучения, обу-
словленное фотоэлектронным поглощением и неко-
герентным рассеянием. В дальнейшем для простоты
мы предполагаем, что поле фотона (4) настроено в
точный резонанс с квантовым переходом |1〉 ↔ |2〉
поглотителя, ωs = ωa ≡ ω, а ширины спектраль-
ных контуров источника и поглотителя одинаковы,
γs = γa ≡ γ. Тогда выражение (5) может быть
переписано следующим образом:

Eout(t, t0) = Es(t, t0)e
−Te/2[eiksSshift(t) +AAR(t, t0)],

(7)
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где

AAR(t, t0) = −Taγ
t
∫

t0

J1(
√

2Taγ(t− τ))
√

2Taγ(t− τ)
eiksSshift(τ)dτ.

(8)

Согласно (7) (без учета множителя e−Te/2), одно-
фотонное поле на выходе из поглотителя являет-
ся суммой падающего поля (4) (первое слагаемое в
(7)) и поля, связанного с поляризационным откли-
ком поглотителя, которое часто называют когерент-
ным рассеянным вперед полем (второй член в (7)).

Используя (7), интенсивность однофотон-
ного импульса на выходе из поглотителя,
Iout(t, t0) = c|Eout(t, t0)|2/(8π), можно записать
в виде

Iout(t, t0) = Is(t, t0)e
−Te
{

(1− |AAR(t, t0)|)2 + (9)

+4|AAR(t, t0)| cos2[0.5ksSshift(t)−0.5 arg(AAR(t, t0))]
}

,

где, согласно (1), Is(t, t0) = (cE2
0/(8π))θ(t − t0) ×

× exp[−2γ(t− t0)] – интенсивность излучения источ-
ника в направлении поглотителя, AAR = |AAR| ×
×exp[i arg(AAR)]. Таким образом, согласно (2), изме-
ряемая интенсивность излучения с энергией фотонов
93.3 кэВ на выходе из поглотителя рассчитывается
путем усреднения интенсивности (9) поля однофо-
тонного волнового пакета по времени t0,

I
(av)
out = N

t
∫

−∞

Iout(t, t0)dt0. (10)

III. Поглощение как результат интерферен-

ции между падающим и рассеянным вперед

полями. Из (7) и (8) следует, что для распространя-
ющегося однофотонного волнового пакета рассеян-
ное вперед поле вначале после своего возникновения
является противофазным по отношению к падающе-
му полю и постепенно увеличивается. Это наиболее
отчетливо видно, когда источник находится в состо-
янии покоя, Sshift(t) ≡ 0. В этом случае амплитуда
рассеянного вперед поля (8) принимает вид

A
(rest)
AR (t, t0) =

[

1− J0

(

√

2Taγ(t− t0)
)]

eiπ, (11)

где предполагается, что t ≥ t0.
Как следует из (11), в общем случае рассеянное

вперед поле является осциллирующей функцией вре-
мени. Начиная с момента t = t0, оно постепенно уве-
личивается с характерной скоростью 1/τa, где τa –
интервал, в течение которого функция Бесселя J0(x)

в (11) изменяется от единицы при t = t0 до нуля при
t−t0 = τa ≈ 2.9/(γTa). Как следует из (11) и (7), в мо-
мент t− t0 = τa имеем J0(

√
2Taγτa) = 0, и амплитуда

рассеянного вперед поля становится равной ампли-
туде падающего поля. Это приводит к исчезновению
поля на выходе из среды. В оптически толстом погло-
тителе скорость затухания 1/τa поля однофотонного
волнового пакета (7), (9) может значительно превы-
шать скорость затухания γs = γ поля (3) на входе
в среду. Это явление называется speed-up эффектом
(эффектом ускорения затухания) [25]. Осциллирую-
щая величина амплитуды рассеянного вперед поля
(11) приводит к колебательному ослаблению прошед-
шего поля однофотонного волнового пакета во вре-
мени, называемому динамическими биениями [25].

Для потока фотонов в целом интегрирование
(10) в случае неподвижного источника усредняет
когерентное рассеянное вперед поле (11) и сгла-
живает динамические биения. В результате сред-
няя интенсивность выходного излучения оказывает-
ся постоянной и меньшей интенсивности источни-
ка, I(av)out,rest(t) < I

(av)
s = cE2

0N/(16πγ). Однако, ес-
ли источник перемещается относительно поглотите-
ля, Sshift(t) 6= 0, зависимость от времени рассеянного
поля (8) обуславливает зависимость интенсивности
выходного поля (10) от времени.

IV. Формирование импульса за счет быст-

рого возвратно-поступательного смещения ис-

точника. Рассмотрим случай быстрого возвратно-
поступательного смещения источника, а именно, ко-
гда изначально неподвижный источник в определен-
ный момент начинает двигаться вперед, а затем на-
зад вдоль направления распространения поля, так
что через определенный промежуток времени ∆ttotal
он возвращается в исходное положение и останав-
ливается. Указанное возвратно-поступательное сме-
щение источника происходит настолько быстро, что
∆ttotal ≪ τa. Тогда, как следует из (8), отклик погло-
тителя не успевает измениться вслед за полем и, сле-
довательно, амплитуда когерентно рассеянного впе-
ред поля может быть аппроксимирована соотноше-
нием AAR(t, t0) = A

(rest)
AR (t, t0), в котором A

(rest)
AR (t, t0)

описывается выражением (11). В этом случае, под-
ставляя (9) и (11) в (10), интенсивность поля на вы-
ходе из среды можно получить в виде

I
(av)
out (t) = I(av)s e−Te

[

e−Ta/2I0(Ta/2) +

+ 4(1− e−Ta/4) sin2(πSshift(t)/λs)
]

, (12)

где I0(x) – модифицированная функция Бесселя ну-
левого порядка. Как следует из (12), интенсивность
прошедшего через поглотитель излучения является
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отображением функции Sshift(t) быстрого возвратно-
поступательного смещения источника с функцией
отображения sin2[πSshift(t)/λs]. Это позволяет преоб-
разовывать излучение постоянной интенсивности от
источника в различные последовательности импуль-
сов, включая одиночные импульсы, с регулируемы-
ми амплитудой, длительностью и формой. Чтобы по-
казать это, рассмотрим модельную функцию смеще-
ния источника в виде последовательности коротких
кусочно-линейных функций (рис. 2а),

Sshift(t) =

M
∑

i=1

S
(i)
shift(t). (13)

А именно, каждое смещение S
(i)
shift(t) начинается в

определенный момент t(i)start, затем в течение интерва-

ла ∆t
(i)
f источник смещается относительно поглоти-

теля на амплитуду ∆z(i) в направлении распростра-
нения излучения, после этого в течение интервала
∆t

(i)
c источник находится в состоянии покоя относи-

тельно поглотителя, и наконец возвращается в исход-
ное положение в течение интервала ∆t

(i)
b :

S
(i)
shift =











































































0, t < t
(i)
start,

∆z(i)

∆t
(i)
f

(t− t
(i)
start), t

(i)
start ≤ t < t

(i)
start +∆t

(i)
f ,

∆z(i), t
(i)
start +∆t

(i)
f ≤ t < t

(i)
start +

+∆t
(i)
f +∆t

(i)
c ,

∆z(i) − ∆z(i)

∆t
(i)
b

(t− t
(i)
start −∆t

(i)
f −∆t

(i)
c ),

t
(i)
start +∆t

(i)
f +∆t

(i)
c ≤ t < t

(i)
start +

+∆t
(i)
f +∆t

(i)
c +∆t

(i)
b ,

0, t ≥ t
(i)
start +∆t

(i)
f +∆t

(i)
c +∆t

(i)
b .

(14)

Как следует из (12)–(14), в этом случае i-й импульс

начинается в момент t(i)start и заканчивается в момент

t
(i)
start +∆t

(i)
total, где ∆t

(i)
total = ∆t

(i)
f +∆t

(i)
c +∆t

(i)
b – об-

щая длительность i-го смещения. При этом пиковая
интенсивность i-го импульса определяется выраже-
нием

I
(i)
peak = I(av)s e−Te

[

e−Ta/2I0(Ta/2) +

+ 4(1− e−Ta/4) sin2(π∆z(i)/λs)
]

. (15)

Пиковая интенсивность достигает своего максималь-
ного значения при смещении источника на вели-
чину ∆z

(i)
max = λs/2. В рассматриваемом случае

длины волны фотона 0.13 Å, соответствующей энер-
гии 93.3 кэВ, указанная величина смещения равна
∆z

(i)
max = 6.5× 10−12 м.

На рисунке 2b представлена временная зависи-
мость интенсивности (12) потока фотонов с энер-
гией 93.3 кэВ на выходе из резонансного поглоти-
теля, смещаемого в соответствии с (13), (14). Рас-
смотрена одна из следующих возможных экспери-
ментальных реализаций, аналогичных [5, 6]. Источ-
ник излучения с энергией фотонов 93.3 кэВ испуска-
ет одиночную спектральную линию почти естествен-
ной ширины. Поглотитель 67Zn представляет собой
поликристаллический порошок ZnS, приблизитель-
но на 100 % обогащенный 67Zn. Он также характе-
ризуется одиночной спектральной линией поглоще-
ния с почти естественной шириной [4, 7]. Согласно
[7], коэффициент Лэмба–Мессбауэра при температу-
ре 4.2 К составляет fa ≈ 1%, что обеспечивает опти-
ческую толщину Ta = 1 для поглотителя 67ZnS тол-
щиной L ≈ 800мкм. С учетом линейного коэффици-
ента нерезонансного поглощения излучения с энер-
гией фотонов 93.3 кэВ в 67ZnS, µ ≈ 1.88 см−1 [26],
можно оценить Te/Ta ≈ 0.15. Как следует из (15),
максимальная пиковая интенсивность формируемых
импульсов, достигаемая при ∆z(i) = λs/2, зависит
от Ta и Te и максимизируется при Ta ≈ 3.2, что со-
ответствует физической толщине поглотителя 67ZnS
L ≈ 2.56мм. В этих условиях для i-го смещения ис-
точника (14) допустимо приближение быстрого сме-

щения, если общее время ∆t
(i)
total удовлетворяет нера-

венству ∆t
(i)
total ≪ τa ≈ 2.9/(γTa) = 23мкс. Самое

продолжительное возвратно-поступательное смеще-
ние источника, показанное на рис. 2а, имеет дли-
тельность ∆t

(6)
total = 2∆t

(6)
f = 0.3мкс. Таким обра-

зом, приближенное аналитическое решение (12) (зе-
леная пунктирная линия на рис. 2b) хорошо согласу-
ется с результатом численного интегрирования урав-
нений (8)–(10) (сплошная красная линия на рис. 2b).
Как видно на рис. 2b, излучение с энергией фотонов
93.3 кэВ, прошедшее через поглотитель 67Zn, анало-
гично цифровой последовательности оптических им-
пульсов.

На рисунке 3 также показана возможность управ-
ления формой отдельных импульсов в последова-
тельности. Например, можно сформировать трапе-
циевидный импульс (первый импульс на рис. 3b), а
также асимметричные треугольные импульсы (вто-
рой и третий импульсы на рис. 3b).

В работе [27] показано, что аналогичные импуль-
сы могут быть получены при использовании фото-
нов с энергией 14.4 кэВ от радиоактивного источни-
ка 57Co и резонансного поглотителя 57Fe. В обоих
случаях указанные импульсы могут быть использо-
ваны, в частности, для реализации метода ядерной

Письма в ЖЭТФ том 121 вып. 1 – 2 2025



16 Е. В. Радионычев, И. Р. Хайрулин

Рис. 2. (Цветной онлайн) Временная зависимость: (a) –
функции смещения источника 67Ga или 67Cu (13), (14)
для M = 6 и (b) – соответствующей нормированной
интенсивности потока фотонов с энергией 93.3 кэВ на
выходе из резонансного поглотителя 67ZnS в случае
Ta = 3.2 (L = 2.56 мм) и Te = 0.15Ta. Для функции
смещения (13), (14) t

(1)
start = 0.5 мкс, t(2)start = 0.7 мкс,

t
(3)
start = 0.9 мкс, t(4)start = 1.5 мкс, t(5)start = 2 мкс, t(6)start =

= 2.4 мкс, ∆t
(i)
b = ∆t

(i)
f = 0.05 мкс (i = 1, 2, 3), ∆t

(4)
b =

= ∆t
(4)
f = 0.1 мкс, ∆t

(i)
b = ∆t

(i)
f = 0.15 мкс (i = 5, 6),

∆t
(i)
c = 0 (i = 1, ..., 6), ∆z(i) = λs/2 (i = 1, 2, 3, 6),

∆z(4) = λs/4, ∆z(5) = 3λs/8. Зеленые пунктирные и
красные сплошные линии построены с использованием
выражений (12) и (8)–(10) соответственно

квантовой памяти, предложенного в [28]. В отли-
чие от эксперимента с использованием синхротрон-
ного источника [29], продемонстрировавшего реали-
зуемость такой квантовой памяти, в данном случае
экспериментальное оборудование будет иметь ком-
пактные размеры. Полученные импульсы могут быть
также использованы для развития метода передачи
информации с помощью гамма-фотонов, предложен-
ного в [13].

V. Заключение. В настоящей работе предложен
метод, позволяющий преобразовывать излучение по-
стоянной интенсивности от радиоактивного мессбау-
эровского источника 67Ga или современного 67Cu с
энергией фотонов 93.3 кэВ в последовательность ко-
ротких импульсов с произвольным количеством им-
пульсов, включая одиночный импульс. Этот метод
также позволяет индивидуально и независимо управ-
лять, по требованию, моментами появления, а так-
же пиковой интенсивностью, длительностью и фор-
мой каждого импульса в последовательности. Метод
основан на пропускании мессбауэровских (безотдач-
ных) фотонов источника через среду резонансно по-
глощающих ядер 67Zn. Импульсы возникают вслед-
ствие быстрого возвратно-поступательного смеще-

Рис. 3. (Цветной онлайн) Временная зависимость: (a) –
функции смещения источника 67Ga или 67Cu, Sshift(t),
(13), (14) для M = 3 и (b) – соответствующей нор-
мированной интенсивности потока фотонов с энергией
93.3 кэВ на выходе из резонансного поглотителя 67ZnS
в случае Ta = 3.2 (L = 2.56 мм) и Te = 0.15Ta. Для
функции смещения (13), (14), t(1)start = 0.1 мкс, ∆t

(1)
f =

= 0.01 мкс, ∆t
(1)
c = 0.08 мкс, ∆t

(1)
b = 0.01 мкс, ∆z(1) =

= λs/2, t(2)start = 0.4 мкс, ∆t
(2)
f = 0.01 мкс, ∆t

(2)
c = 0,

∆t
(2)
b = 0.09 мкс, ∆z(2) = λs/4, t(3)start = 0.7 мкс, ∆t

(3)
f =

= 0.09 мкс, ∆t
(3)
c = 0, ∆t

(3)
b = 0.01 мкс, ∆z(3) = 3λs/8.

Зеленые пунктирные и красные сплошные линии по-
строены с использованием выражений (12) и (8)–(10)
соответственно

ния источника в определенные моменты времени от-
носительно поглотителя (или, наоборот, поглотителя
относительно источника) вдоль направления распро-
странения фотонов на расстояние, меньшее полови-
ны длины волны фотона. Когда источник (или по-
глотитель) начинает быстро смещаться, деструктив-
ная интерференция между падающим полем и коге-
рентно рассеянным вперед полем поглотителя сменя-
ется на конструктивную интерференцию вследствие
эффекта Доплера. Это приводит к резкому увеличе-
нию интенсивности прошедшего через поглотитель
поля. Когда источник (или поглотитель) быстро воз-
вращается в исходное положение, деструктивная ин-
терференция восстанавливается, что вызывает рез-
кое уменьшение интенсивности. В результате во вре-
менной зависимости интенсивности прошедшего че-
рез поглотитель поля возникает короткий импульс.
Импульс начинает формироваться в момент начала
смещения источника (или поглотителя) и заканчи-
вается в тот момент, когда источник (или поглоти-
тель) останавливается в исходном положении. Пико-
вая интенсивность и форма импульса отображают
амплитуду и временную зависимость функции сме-
щения источника (или поглотителя). Длительность
импульсов может быть на несколько порядков мень-
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ше времени жизни излучающего квантового состоя-
ния источника. Как следует из [5, 6, 8–15, 18, 19], на
имеющемся в настоящее время оборудовании могут
быть получены гамма-импульсы с энергией фотонов
93.3 кэВ наносекундной длительности.

Предложенный метод может расширить область
применения мессбауэровской спектроскопии и от-
крыть новые перспективы в рентгеновской кванто-
вой оптике. В отличие от синхротронного источника
[29], получаемые импульсы гамма-излучения могут
быть использованы для реализации ядерной кванто-
вой памяти на оборудовании компактных размеров,
а также для развития метода передачи информации
с помощью гамма-фотонов, предложенного в [13].
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